Thank you for viewing this presentation.

We would like to remind you that this material is the property of the author. It is provided to you by the ERS for your personal use only, as submitted by the author.

© 2016 by the author
Pleural effusion and thickening

Dr Ioannis Psallidas, MD, PhD
Honorary Consultant Respiratory Physician
RESPIRE2 ERS Fellow 2015-2017
Oxford Centre for Respiratory Medicine
Disclosures

• Nothing to disclose
Overview

• Evidence base for use of thoracic ultrasound
 – diagnostic and interventional

• Pleural effusion
 – Characteristics of effusions
 – Transudates vs exudates
 – Colour fluid sign
 – Formulas for volume estimation

• Malignant pleural effusion
 – US sensitivity on detection

• Empyema
 – US findings

• Pleural thickening
 – Identification, DD with pleural effusion
Overview

• Evidence base for use of thoracic ultrasound
 – diagnostic and interventional

• Pleural effusion
 – Characteristics of effusions
 – Transudates vs exudates
 – Colour fluid sign
 – Formulas for volume estimation

• Malignant pleural effusion
 – US sensitivity on detection

• Empyema
 – US findings

• Pleural thickening
 – Identification, DD with pleural effusion
Why ultrasound?

- Not all opacification is fluid...

Why ultrasound?

• **Higher diagnostic sensitivity vs. plain chest radiography**
 – pleural effusion +/- consolidation

• **Accessible to clinician and patient**
 – instant feedback to inform decision-making process

• **Provides additional diagnostic information**
 – echogenicity, septations, pleural thickening, underlying viscera

• **Improves procedural outcomes**
 – eliminates “dry tap”, limits risk of iatrogenic complications
Interventions

• Thoracic ultrasound (TUS)
 – necessary for any pleural intervention for fluid
 – more sensitive than CXR for detection of fluid\(^1\)
 – improves diagnostic accuracy and reduces complications\(^2\)

• BTS Pleural Disease Guidelines\(^3\)
 ▶ Bedside ultrasound guidance significantly increases the likelihood of successful pleural fluid aspiration and reduces the risk of organ puncture. (B)
 ▶ Thoracic ultrasound guidance is strongly recommended for all pleural procedures for pleural fluid. (B)
 ▶ The marking of a site using thoracic ultrasound for subsequent remote aspiration or chest drain insertion is not recommended except for large pleural effusions. (C)

\(^1\) Eibenberger KL et al. Radiology 1994
\(^2\) Diacon AH et al. Chest 2003
\(^3\) BTS Pleural Disease Guidelines. Thorax 2010
The evidence for fluid

• Better than clinical examination
 - 15% of clinically specified puncture sites inaccurate / “at risk”
 - 80% of these successfully aspirated / accessible with TUS
 - If clinical site not identified, TUS achieved in 54%
 - TUS prevented iatrogenic organ puncture in 10% of cases

• Reduces cost / complications in thoracentesis
 - 61,261 thoracenteses, 47% performed without TUS
 - MV modelling and analysis
 - TUS reduced risk of pneumothorax by 19%
 - OR 0.81; 95% CI 0.74-0.90

1 Diacon et al. Chest 2003
2 Mercaldi et al. Chest 2013
Overview

• Evidence base for use of thoracic ultrasound
 – diagnostic and interventional

• Pleural effusion
 – Characteristics of effusions
 – Transudates vs exudates
 – Colour fluid sign
 – Formulas for volume estimation

• Malignant pleural effusion
 – US sensitivity on detection

• Empyema
 – US findings

• Pleural thickening
 – Identification, DD with pleural effusion
Normal appearances

• Thoracic anatomy
 – ultrasound unable to “see” through air or bony structures
 – recognition of “normal” features and artefacts
 – lung sliding, A-lines and B-lines (comet tails)

• Other organs
 – liver, spleen, heart and vascular structures

• Aerated lung
 – demonstration of lung sliding, B-lines
 – you cannot comment on what is below the interface
 – you cannot “see” the lung, rather artefact caused by lung
Pleural effusion

• Identification
 – echogenicity (“swirling” pattern)
 – assess underlying lung (atelectasis, consolidation)
 – inversion of hemidiaphragm (correlation with symptoms)
 – pleural thickening and nodularity

• Diagnostic features
 – Aid to identify cause (transudates vs exudates)
 – Specific for malignant pleural effusions
 – Particular findings in pleural infection
Characterisation of effusions

Non echogenic

Echogenic
Septations and fluid loculations
Number of septations

Predictor of non symptomatic benefit post fluid drainage

Psallidas I et al, submitted article
Combination of echogenicity and septations

- Complex non-septated
- Anechoic
- Complex septated
- Homogenously echogenic
Size of effusion on US

Size / Volume measurement1:
- 2cm depth of fluid = 480mls
- 4cm depth of fluid = 960mls

Supine patients2:
- Size calculation:
 » Visceral – parietal (mm) x 20 = volume (mls)1
 » Distance between posterior chest wall and lung of >50mm predicts >500ml thoracentesis vol2

$^1 = $Balik, ICM 2006
$^2 = $Roch, Chest 2005
Overview

- Evidence base for use of thoracic ultrasound
 - Diagnostic and interventional

- Pleural effusion
 - Characteristics of effusions
 - Transudates vs exudates
 - Colour fluid sign
 - Formulas for volume estimation

- Malignant pleural effusion
 - US sensitivity on detection

- Empyema
 - US findings

- Pleural thickening
 - Identification, DD with pleural effusion
The “simple” effusion

<table>
<thead>
<tr>
<th></th>
<th>This study</th>
<th>Leung et al (12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>52</td>
<td>74</td>
</tr>
<tr>
<td>Study type</td>
<td>US</td>
<td>CT</td>
</tr>
<tr>
<td>Parietal pleural thickening >1cm</td>
<td>42%</td>
<td>56%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>95%</td>
<td>88%</td>
</tr>
<tr>
<td>Nodular pleural thickening</td>
<td>42%</td>
<td>36%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td>85%</td>
</tr>
<tr>
<td>Visceral pleural thickening</td>
<td>15%</td>
<td>NA</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td>85%</td>
</tr>
<tr>
<td>Diaphragmatic thickening >7mm</td>
<td>42%</td>
<td>NA</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>95%</td>
<td>NA</td>
</tr>
<tr>
<td>Diaphragmatic layers resolved</td>
<td>30%</td>
<td>NA</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>95%</td>
<td>NA</td>
</tr>
<tr>
<td>Diaphragmatic nodules</td>
<td>30%</td>
<td>NA</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td>NA</td>
</tr>
<tr>
<td>Overall</td>
<td>79%</td>
<td>72%</td>
</tr>
<tr>
<td>Specificity</td>
<td>100%</td>
<td>83%</td>
</tr>
</tbody>
</table>

NA: Not assessed

Table 4: Sensitivities and specificities for ultrasound and CT determined criteria that are suggestive of malignant pleural disease.
Overview

• Evidence base for use of thoracic ultrasound
 – diagnostic and interventional

• Pleural effusion
 – Characteristics of effusions
 – Transudates vs exudates
 – Colour fluid sign
 – Formulas for volume estimation

• Malignant pleural effusion
 – US sensitivity on detection

• Empyema
 – US findings

• Pleural thickening
 – Identification, DD with pleural effusion
Overview

• Evidence base for use of thoracic ultrasound
 – diagnostic and interventional

• Pleural effusion
 – Characteristics of effusions
 – Transudates vs exudates
 – Colour fluid sign
 – Formulas for volume estimation

• Malignant pleural effusion
 – US sensitivity on detection

• Empyema
 – US findings

• Pleural thickening
 – Identification, DD with pleural effusion
Pleural thickening

• Unechoic on ultrasound

• Due to:
 – Malignancy: e.g. mesothelioma
 – Asbestos exposure
 – Empyema
Use of Doppler pleural thickening
Use of Doppler pleural effusion
Visceral thickening
General points

• **ASK FOR HELP IF YOU NEED IT!**
 – senior, more experienced colleagues for second opinion
 – get a radiologist (more skilled; access to other techniques)

• **Trust your CXR interpretation**
 – does this correlate with what you are seeing on TUS?

• **Know your limits**
 – do not practice outside your competence / experience
 – TUS is safe, but what follows may not be...
Thank you for your attention!

Ioannis.Psallidas@ndm.ox.ac.uk