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Introduction 

Aim 

This set of worked examples is designed to help people work with R to develop spirometric 

prediction equations using GAMLSS. The examples can be used for other measurements with 

similar distributional properties. Please note that our examples represent one way to fit 

gamlss models; dependent on the outcome and the distributions different models may be 

appropriate. Even for spirometry, different sample sizes and narrow age ranges may reveal 

that simpler models, that do not require splines, are satisfactory. 

 

About R  

The R environment is an integrated suite of software for data facilities and graphical display. 

“R is a free software environment t for statistical computing and graphics. It compiles and runs 

on a wide variety of UNIX platforms, Windows and MacOS.”  

R Development Core Team (2007). R: A Language and Environment for Statistical 

Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.  

http://www.r-project.org/ 

For a comprehensive introduction to the use of R see: 

W.N. Venables, B.D. Ripley. Modern Applied Statistics with S. Fourth Edition. Springer. 

ISBN 0-387-95457-0, 2002. http://www.stats.ox.ac.uk/pub/MASS4/  

For the R scripting language see: 

W.N. Venables, D.M. Smith and the R Development Core Team. An introduction to R. 

http://cran.r-project.org/doc/manuals/R-intro.pdf 

 

About GAMLSS 

“Generalized Additive Models for Location, Scale and Shape (GAMLSS) are (semi) parametric 

regression type models. They are ‘parametric’ in that they require a parametric distribution 

assumption for the response variable, and ‘semi’ in the sense that the modelling of the 

parameters of the distribution, as functions of explanatory variables, may involve using non-

parametric smoothing functions.” http://gamlss.org/ 

Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape 

(with Discussion). Applied Statistics 2005; 54: 507–544.  

 

About the dataset 

The worked examples use a dataset consisting of  

 FEV1, a spirometric measure defined as the volume of air that can be expelled in one 

second from the lung during a forced expiration after a full inspiration, 

 Age (years) 

 Height (cm) 

 Sex (1=male, 2=female) 

 Centre: data were collated from 4 centres.  

FEV1 varies with height and age; an unusually low value adjusted for height and age may 

indicate lung disease. The worked examples show how to use GAMLSS to model the 

relationship between the dependent (FEV1) and explanatory (height, age, etc.) variables. 

http://www.r-project.org/
http://www.stats.ox.ac.uk/pub/MASS4/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://gamlss.org/
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Notation 

Scripts appear in red, the output from R in blue, objects, functions and commands in 

monospaced typewriter font. R uses the > command prompt, but this has not been reproduced 

in this manuscript. Comments preceded by # are disregarded by R. 
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Installation 

Installation involves two steps: 

 R software 

 Required packages for different jobs. 

 
Installing R 

Visit http://cran.r-project.org/, download the version of R that fits your operating system 

(Linux, MacOS X or Windows) and install it. 

 

Installing packages 

For the present analyses we will need the package gamlss. 

Open R, click Packages > Install Packages > Choose location closest you > Click ok > Choose  

- gamlss 

Click ok.  

 

Updating R and packages 

R and its packages are frequently updated. Therefore check regularly for updates of R at 

http://cran.r-project.org/. Packages can be easily updated as follows:  

Packages > Update packages.  

If updates are available and a CRAN mirror has been defined, their names will be displayed in a 

window, and they can be installed. 

 

Two notes of caution 

 It is recommended that you run R as an Administrator. 

 R is case sensitive. Therefore, after defining an object ALL, later reference to e.g. all or 

All imply different objects and may generate an error message. 

http://cran.r-project.org/
http://cran.r-project.org/
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Regression models and GAMLSS 

Regression analysis 

Simple linear regression models take the form 

 

Yi = β0 + β1·x1i + .... + βp·xpi + εi 

 

It assumes that errors associated with each term are independently and identically 

distributed, with zero mean and constant variance. The least squares solution, and the 

assumption that errors are normally distributed, forms the basis for testing the significance of 

β1..n. The residual error term is orthogonal with respect to the predicted value. 

 

More recently generalised linear models, generalised additive models, and generalized linear 

mixed models have become more widely used. In these the normal distribution for Yi is 

replaced by an exponential family of distributions (of which the normal is a special case), and a 

link function relates µi, the mean of Yi, to the linear predictor. 

 

Generalized additive models for location, scale and shape (GAMLSS) extend the above. In 

GAMLSS the exponential family distribution assumption for the response variable (Y) is 

replaced by a general distribution family that can model both skewness and kurtosis. Thus, 

GAMLSS offers general linear predictors for all the distribution parameters µ (location, mean, 

median, mu), σ (scale, sigma, variability), ν (shape, nu, skewness) and τ (shape, tau, kurtosis), 

and a choice of error distributions.  

 

Distributions 

There are more than 60 different distributions available in the current implementation of 

GAMLSS (http://gamlss.org/images/stories/papers/Distributions-2010-onlyThetable.pdf) 

which allow up to four moments of a distribution (µ=mu, sigma=σ, nu=ν, and tau=τ) to be 

modelled.  As argued above we are definitely interested in being able to model mu and sigma 

(mean and coefficient of variation). The Box-Cox-Cole-Green1 (BCCG) distribution is suitable 

for all combinations of the distributional parameters within their range (i.e. mu >0, sigma >0, 

nu =(-Inf,+Inf)). We will explore the need to also model skewness (nu, using the BCCG 

distribution) and/or kurtosis (tau), using the BCPE distribution model. We shall also explore 

the normal distribution (NO). The default link functions for these models are as follows: 

 

Distribution R family µ σ ν τ 

normal NO() identity log - - 

Box-Cox Cole and Green BCCG() identity log identity - 

Box-Cox power exponential BCPE() identity log identity log 

 

To model spirometry, where age and height act multiplicatively, the link for µ needs to be the 

log rather than the identity (see Cole et al. 20092). 

                                                             
1  Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 1992; 11: 

1305-1319. 
2  Cole TJ, Stanojevic S, Stocks J, Coates AL, Hankinson JL, Wade AM. Age- and size related reference ranges: A case study of 

spirometry through childhood and adulthood. Statist Med 2009; 28: 880-898. 

http://gamlss.org/images/stories/papers/Distributions-2010-onlyThetable.pdf
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Smoothing splines 

Complex effects of explanatory variables on the dependent variable can be modelled using 

splines, which allow the dependent variable to vary smoothly as a function of an explanatory 

variable. GAMLSS offers the cubic smoothing spline  
 

 cs(x, df = n, spar = NULL, c.spar = NULL) 

 

and the penalized B-spline 
 

 pb(x, df = NULL, lambda = NULL, control = pb.control(...), ...) 
  

The cubic spline is dealt with in the 

appendix.  We will develop models 

using pb(), the standard in GAMLSS. 

This function automatically finds the 

optimum df for mu, sigma and nu. 

As shown later, FEV1 varies in a 

complex manner with age.  Using 

splines the effect of age can be 

described by a linear coefficient (fixed 

effect) and an age spline. An example 

of the latter is shown in Figure 1, 

illustrating how the linear age 

coefficient is ‘adjusted’ by an age-

specific beta spline, allowing a 

smoothed representation of the non-

linear effect of age on FEV1.  

 

A detailed treatise on GAMLSS can be found in:  

Rigby B, Stasinopoulos M. A flexible regression approach using GAMLSS in R. 

http://studweb.north.londonmet.ac.uk/~stasinom/papers/book-2010-Athens.pdf  

 

Quantile regression 

Quantile regression (QR) is a powerful technique for estimating quantile curves such as the 5th 

centile. It avoids making distributional assumptions, on the grounds that the distribution 

cannot be assumed, and as such it is fundamentally different from the GAMLSS approach which 

relies on an underlying distribution. The absence of a distribution with QR means that it 

provides centiles not z-scores, and the centiles can be applied only to measurements within 

the range of the reference group. So, pathological values outside the range cannot be handled 

at all. This is a serious disadvantage, as it excludes from consideration the very group of 

patients most in need of clinical support. For this reason we have not considered QR here. 

Figure 1 

http://studweb.north.londonmet.ac.uk/~stasinom/papers/book-2010-Athens.pdf
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Exploring the dataset 

First remove (rm) saved workspace from a previous R session. To learn more about a function 

type ? before its name, e.g. ?rm. 
rm(list=ls(all=TRUE)) 
  

Load the required package libraries.  
library(gamlss) 
 

Read the comma separated file with the data, and create the data frame ‘ALL’. Note the double 

forward slash to denote folders. First define the working directory with setwd(). 
setwd("D:\\LungFunction\\GAMLSS-for-statisticians") 

ALL <- read.csv("data.csv") 
 

Find the number of records and variables in ALL. 
dim(ALL) 

[1] 12829     6 

12,829 records, 6 variables. 
 

Find the variable names.  
names(ALL) 

[1] "ID"     "sex"    "age"    "height" "fev"    "centre" 
 

summary()summarises the distribution of variables in ALL. 
summary(ALL) 

 ID sex age height fev centre 

Min. 1 1 5.862 102 0.561 1 

1st Qu. 3208 1 11.65 149.2 2.14 2 

Median 6415 2 24 161.6 2.89 2 

Mean 6660 1.554 29.61 159 2.976 2.032 

3rd Qu. 9622 2 43 170.8 3.66 2 

Max. 75572 2 94 206.5 6.97 4 

 

table() tabulates ALL by sex: 1=males, 2=females. 
table(ALL$sex) 

   1    2  

5723 7106 

 

Use cut()to create grouped variables for age and height, with bin widths of 2 years and 5 cm 

respectively. The function cutbin() achieves this and provides mid-bin value labels for each group 

that are multiples of the bin width. 
cutbin <- function(x, k) { 

 # x = variable, k = bin width 

 # mid-bin labels are multiples of k 

 k2 <- k / 2 

 b <- seq(floor(min((x - k2) / k)) * k, ceiling(max((x - k2) / k)) * k, 

k) 

 cut(x, breaks=b + k2, labels=b[-1]) 

} 

ALL$ageintrvl <- cutbin(ALL$age, 2) 

ALL$heightintrvl <- cutbin(ALL$height, 5) 
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Split the data frame by sex by selecting the rows: mm for males, ff for females. Note the double 

= to denote equality. The square bracket notation is [rows, columns], and if either rows or 

columns is omitted all are selected. 

 Please note, here we use only males for the example. 
mm <- ALL[ALL$sex == 1, ] 

ff <- ALL[ALL$sex == 2, ] 

 

Plot FEV1 as a function of age in males. First define the dimensions of the plot using 

windows() - a new graphics device is created each time.  
windows(6,5) 

plot(mm$age, mm$fev) 

    Figure 2 

 

Plot FEV1 as a function of age in males with boxplots, using ageintrvl rather than age: 
plot(mm$ageintrvl, mm$fev) 

    Figure 3 
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Enhance the plot by labelling the axes, making the y-axis labels horizontal and increasing the 

font size. cex stands for character expansion factor, so cex =1.3 expands the characters by 

30%; las stands for label of axis style, lab stands for label (type ?title). 
plot(mm$ageintrvl, mm$fev, xlab="Age interval (yr)", ylab="FEV1 (L)", 

main="Males", las = 1, cex.main=1.1, cex.lab=1.3, cex.axis = 1.1) 

    Figure 4 
 

 

A curvilinear relationship, where the scatter increases with the level of FEV1. 
 

Look at the relationship of FEV1 with standing height.  
summary(mm$heightintrvl) 
 

Plot FEV1 versus height in males with boxplots. 
plot(mm$heightintrvl, mm$fev, xlab="Age interval (yr)", ylab="FEV1 (L)", 

main="Males", las = 1, lwd=1, cex.main=1.1, cex.lab=1.3, cex.axis = 1.1) 

    Figure 5 

 

Inspect the age distribution in males. 
plot(mm$ageintrvl, xlab="Age interval (yr)", ylab="Number of subjects", 

main="Males", cex.lab=1.1, las=1) 
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    Figure 6 

 

In the Appendix we show how to display the age distributions of both females and males. 
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Getting to work 

Considerations for modelling pulmonary function data 

As shown in the previous section, in this cross-sectional population sample there is an increase 

in FEV1 through childhood until about age 20, followed by a decline with age in adulthood. The 

relationship between FEV1 and age or height is not linear, and the scatter about the average 

not constant. These patterns need to be accounted for in the model. 

 
Biological considerations 

Humans of different body size have a scaling problem that affects all organs. The scaling must 

be such that the metabolic demands are met; hence all body functions should be compatible 

with life, and people with different body size should function equivalently. From the study of 

mammals of widely different sizes we know that volume scales as m1, where m = body mass3,4. 

We might therefore be tempted to model the FEV1 as linearly proportional to body mass or 

volume, i.e. length raised to the third power. However, this scaling applies across species but 

not within species, where regression effects make it inappropriate.  In clinical medicine it is 

therefore not appropriate to predict pulmonary function using body mass or length3. 

 

It has been shown that within mammal species body mass scales as the square of length: m ~ l2 
1,2. In fact, this forms the basis for normalizing body mass for body size by the use of the 

Quetelet index5,6, nowadays called body mass index: BMI = m/l2, where m = body mass in kg, 

and l is standing height in m. So it makes sense to model lung volume (V) as a function of 

height squared: V ~ l2. Thus one might expect a linear model with log transformed indices of 

the form: log(V) = a + k·log(height) + ε, and k ≅ 2. 

 
Growth and ageing 

The above allometric relationship holds for adult mammals. However, during childhood body 

proportions change; in particular the legs become relatively longer, thereby constituting a 

larger percentage of standing height. This alters the relationship between height and 

pulmonary function during growth.  

In addition Figures 1 and 2 show complex age trends in pulmonary function during 

childhood, adulthood, and the transition between them. It follows that age as a spline curve 

should form part of the model. 

In the example dataset age ranges from 6-94 years. Childhood and adolescence cover only 

about 14 years, which makes it hard for the software to detect trends in the period. This can be 

remedied by making the two periods more equal by transforming age (A), either by log 

transformation or more generally with the power function agep where p < 1 (logs are 

equivalent to p = 0). 

                                                             
3 McMahon TA. Size and shape in biology. Elastic criteria impose limits on biological proportions, and consequently 

on metabolic rates. Science 1973; 179, 1201-1204. 
4 West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science 1997; 

276: 122-126. 
5 Quetelet A. Recherches sur le poids de l’homme aux différent âges. Nouveaux Mémoire de l’Academie Royale des 

Sciences et Belles-Lettres de Bruxelles. 1832, t. VII. 
6 Quetelet A. Sur l’homme et le développement de ses facultés. Essai de physique social. Paris, Bachelier, Imprimeur-

Libraire, 1835, t. 1. 
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Best fitting model 

We want the simplest, most parsimonious model. To that end we compare different models 

using the Schwarz Bayesian Criterion SBC = deviance + df·log n, where the fitted deviance is 

−2·log likelihood, n is the sample size and df is the total model degrees of freedom. Over-fitting 

is avoided by selecting the model with the smallest SBC.  

 

We start as described in the introduction: read the data file, create the age and height intervals, 

then create the object mm which contains data on males only. Note that the function cutbin() 

needs to have been created. 
 

setwd("D:\\LungFunction\\GAMLSS-for-statisticians") 

ALL <- read.csv("data.csv") 

ALL$ageintrvl <- cutbin(ALL$age, 2) 

ALL$heightintrvl <- cutbin(ALL$height, 5) 

summary(ALL) 

mm <- ALL[ALL$sex == 1, ] 

 

What model to choose? As argued above, we expect volumes like the FEV1 to be a power 

function of height, implying log transformation of both volume and height. We also argued that 

log(age) makes the child and adult periods more comparable. Thus we think that the model 

 

log(index) = f(log(height), log(age)) 

 

is biologically plausible. In the simplest form this translates into 

 
mm.fev <- gamlss(fev ~ log(height) + log(age),family = BCCG(mu.link = "log"), 

data=mm) 

 

where ~ indicates function of.  This is a conventional linear equation, where mu.link = log 

indicates that the predicted mean (the M in LMS, mu, µ) relates to the log transformed FEV1, 

and data=mm signifies that the analysis relates to object mm. This approach is deficient in many 

respects, as we shall demonstrate. 

Let us first look at the data in more detail by studying log-log plots. 

Opening a graphical device for each new graph using the command windows() offers the 

advantage that successive plots can be compared. Graphical devices are numbered, so one can 

issue several commands such as dev.prev(), dev.next(), dev.set(which=k), 

dev.off(k); graphics.off() terminates all graphics devices, except the null device. 
windows(6,5) 
 

Generate a log-log plot. 
plot(mm$height, mm$fev, log="xy", las=1, xlab="log height", ylab="log FEV1") 
 

Generate a grid, if you wish. 
abline(v=seq(100,200,20), lty=3) 

abline(h=seq(1,9,1), lty=3) 
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    Figure 7 
 

There seems to be a slight change in the slope at about height 165 cm. The trend is slightly 

obscured by the increased variability. So let us generate a log-log box plot for a clearer picture.  
range(log(mm$age)) 

[1] 1.811414 4.488636 
 

range(log(mm$height)) 

[1] 4.624973 5.330300 
 

Divide log(age) and log(height) into intervals. 
mm$logageintrvl <- cutbin(log(mm$age), 0.2) 

mm$logheightintrvl <- cutbin(log(mm$height), 0.05) 

windows(6,5) 

plot(mm$logheightintrvl, log(mm$fev), las=1, xlab="log height interval", 

ylab="log FEV1") 

    Figure 8 
 

A fairly linear relationship, but there seems to be a step upwards at 165 cm (log(165) = 5.1). 

 Log transformation does not stabilise the variance over the entire age range. 
windows(6,5) 

plot(mm$logageintrvl, log(mm$fev), las=1, xlab="log age interval", ylab="log 

FEV1", main=”Males”) 



GAMLSS in action 

 

15 
 

    Figure 9 
 

Curvilinear increase until about age 12 (log(12) ≅ 2.5), then a stepwise increase towards 

adulthood, followed by a plateau until about age 30 (log(30) = 3.4), and then an accelerating 

decline. The variability in FEV1 increases sharply at age 12, the start of the growth spurt in 

boys. The growth spurt does not commence at the same time in all individuals, so that the 

scatter in height, and hence in FEV1, increases. 

 

It follows that  

 one height exponent for all ages seems to make sense (see Cole et al. 20097),  

 log transformation of age makes the age range in children and adults about the same,  

 the scatter (the S in LMS, sigma, σ) needs to be modelled so that residuals are normally 

distributed, 

 a smoothing spline is required to properly model age-related lung growth and 

subsequent decline. 

 

Which model 

Please note that any age transformation should be the same for mu, sigma and nu:  
mm.fev <- gamlss(fev ~ log(height) + pb(log(age)), sigma.fo =~ pb(log(age)), 

nu.fo =~log(age), family = BCCG(mu.link = "log"), data=mm) 
 

In the case of a normal distribution nu=1, so let us force that value as follows: 
mm.fev2 <- gamlss(fev ~ log(height) + pb(log(age)), sigma.fo =~ pb(log(age)), 

nu.fix=T, nu.start=1, family = BCCG(mu.link = "log"), data=mm) 

 

By typing summary(mm.fev) or summary(mm.fev2) one obtains the summary statistics for 

each object, and can then compare the SBCs. However, that is cumbersome, particularly if 

there are many objects. Instead we use GAIC(). Instead of the generic AIC() function, where 

the penalty function k defaults to k=2,  we use a heavier penalty function (which protects 

against over-fitting) with k = log(length(mm$fev)), which gives us the SBC. Don’t be led 

astray by the fact that the output says AIC, you are shown the SBC of each object. As the 

                                                             
7 Cole TJ, Stanojevic S, Stocks J, Coates AL, Hankinson JL, Wade AM. Age- and size related reference ranges: A case study of 
spirometry through childhood and adulthood. Statist Med 2009; 28: 880-898. 
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number of males is 5,723, each extra degree of freedom penalises the SBC by log(5723) = 8.65 

units. 
GAIC(mm.fev, mm.fev2, k=log(length(mm$fev))) 

              df     AIC 

mm.fev2 22.21772 5536.89 

mm.fev  24.14602 5546.97 

 

GAIC is usually applied to a series of models, and it’s useful to be able to specify the model 

names using a pattern rather than listing them all. The routine GAICpatt() generalises GAIC 

to allow this. To use it first source it 
GAICpatt <- function(patt, k=2) eval(parse(text=paste('GAIC(', 

paste(ls(envir=parent.frame(), patt=patt), collapse=','),', k=', k, ')', 

sep=''))) 

 

To use GAICpatt() specify the required model names using a “grep” pattern, the example 

here being a name starting with ‘mm’ and followed by at least one character. This identifies 

mm.fev and mm.fev2 but excludes mm. Also define k in the same way as for GAIC(). 
GAICpatt('^mm.', k=log(length(mm$fev))) 

              df     AIC 

mm.fev2 22.21772 5536.89 

mm.fev  24.14602 5546.97 
 

mm.fev2 is the more parsimonious model. Let us look at the summary statistics: 
summary(mm.fev) 

Family: c("BCCG", "Box-Cox-Cole-Green")  

 

Call: gamlss(formula = fev ~ log(height) + pb(log(age)), sigma.formula =

 ~pb(log(age)), nu.formula = ~log(age), family = BCCG(mu.link =

 "log"), data = mm)  

 

Fitting method: RS()  

 

------------------------------------------------------------------- 

Mu link function: log 

Mu Coefficients: 

  Estimate Std. Error t value Pr(>|t|) 

(Intercept) -10.54905 0.092709 -113.79 0.000e+00 

log(height) 2.27557 0.019882 114.45 0.000e+00 

pb(log(age)) 0.04322 0.003708 11.66 4.718e-31 

------------------------------------------------------------------- 

Sigma link function: log 

Sigma Coefficients: 

  Estimate Std. Error t value Pr(>|t|) 

(Intercept) -2.4682 0.04180 -59.053 0.000e+00 

pb(log(age)) 0.1177 0.01341 8.774 2.242e-18 

------------------------------------------------------------------- 

Nu link function: identity  

Nu Coefficients: 

  Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.5798 0.3624 1.600 0.1097 

log(age) 0.1829 0.1114 1.641 0.1008 

------------------------------------------------------------------- 

No. Of observations in the fit:  5723  
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Degrees of Freedom for the fit:  24.14602 

 Residual Deg. Of Freedom:  5698.854  

 At cycle: 8  

  

Global Deviance:  5338.052  

 AIC:  5386.345  

 SBC:  5546.97  

 

Note: method RS(). The current algorithms for GAMLSS are RS(), CG() and mixed(). i.e. 

method=RS() will use the Rigby and Stasinopoulos algorithm, method=CG() will use the Cole 

and Green algorithm and mixed(2,10) will use the RS algorithm twice before switching to the 

Cole and Green algorithm for up to 10 extra iterations. The default for method is RS(). All 

methods end up with essentially the same fitted model. 

 
summary(mm.fev2) 

Family: c("BCCG", "Box-Cox-Cole-Green")  

 

Call: gamlss(formula= fev ~ log(height) + pb(log(age)), sigma.formula = 

~pb(log(age)), family = BCCG(mu.link ="log"), data = mm, nu.start = 

1, nu.fix = T)  

 

Fitting method: RS()  

------------------------------------------------------------------- 

Mu link function: log 

Mu Coefficients: 

   Estimate Std. Error t value Pr(>|t|) 

(Intercept) -10.56310 0.093333 -113.18 0.000e+00 

log(height)  2.27937 0.020035  113.77 0.000e+00 

pb(log(age))  0.04112 0.003767  10.92 1.764e-27 

------------------------------------------------------------------- 

Sigma link function: log 

Sigma Coefficients: 

   Estimate Std. Error t value Pr(>|t|) 

(Intercept)  -2.4830  0.04180 -59.407 0.000e+00 

pb(log(age)) 0.1237  0.01341 9.221 4.041e-20 

------------------------------------------------------------------- 

Nu parameter is fixed 

Nu = 1  

------------------------------------------------------------------- 

No. of observations in the fit:  5723  

Degrees of Freedom for the fit:  22.21772 

  Residual Deg. of Freedom:  5700.782  

  at cycle: 5 

 

Global Deviance:   5344.657  

 AIC:   5389.092  

 SBC:   5536.89  

 

We will discuss later how to judge whether there is a good fit to the data.  At this stage suffice 

it to say that model mm.fev2 is to be preferred: the simplest and most parsimonious model, it 

requires 2 df less than mm.fev and produces a slightly lower SBC. In mm.fev age does not seem 

to contribute any information 
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This is about as good as it gets. The following command provides a wealth of information: 

The following command gives a white background 
op <- par(mfrow = c(2, 2), mar = par("mar") + c(0, 1, 0, 0), bg = "white")  

plot(mm.fev2, xvar=mm$ageintrvl, par=op) 

 

    Figure 10 

 

The quantile (standardised) residuals are evenly distributed over predicted values (upper 

left). There is some age dependency of variability (upper right). The frequency density plot 

(lower left) is compatible with a normal distribution with some skewness to the right, which is 

confirmed in the Q-Q plot (lower right). The distribution appears to be good between Z-scores 

-3 and +3, which covers the 99.7 percent confidence interval of the mean; for practical 

purposes this is a satisfactory fit to the data. For safety’s sake, let us inspect the range of 

residuals: 
 

range(resid(mm.fev2)) 

[1] -4.006300  4.785629 

It is a matter of judgement, but we are inclined to remove data only if the Z-score is <-5 or >+5. 

In this example no need to worry. 

 

 The function centiles() also provides useful insight how well the fitted distribution agrees 

with a normal distribution. The function is appropriate for one continuous explanatory 

variable in the model. Remember that in the models fev was log transformed, and a function 

of log(height). In this case the problem can therefore be overcome by calculating fev divided 

by heightk, where k is the coefficient for log(height) in mm.fev or mm.fev2; this leaves only 

one explanatory variable, i.e. log(age).  The intercept is the first, k is the second linear 

regression coefficient (value ~2.28). In practice the two estimates are very similar, and the 

second one is used. 
mm$fevhtk <- mm$fev / (mm$height / 100) ^ mm.fev$mu.coeff[2] 

mm.corr1 <- gamlss(fevhtk ~ pb(log(age)), sigma.fo =~ pb(log(age)), nu.fo 

=~log(age), family = BCCG(mu.link = "log"), data=mm) 

mm.corr2 <- gamlss(fevhtk ~ pb(log(age)), sigma.fo =~ pb(log(age)), 

nu.fix=TRUE, nu.start=1, family = BCCG(mu.link = "log"), data=mm) 
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We can now inspect the age dependence of height-corrected FEV1 by comparing the 

distribution of centiles: 
centiles.com(mm.corr1,mm.corr2,xvar=mm$age) 

********  Model 1 ********  

% of cases below  0.4 centile is  0.5591473  

% of cases below  10 centile is  9.837498  

% of cases below  50 centile is  50.32326  

% of cases below  90 centile is  90.73912  

% of cases below  99.6 centile is  99.33601  

********  Model 2 ********  

% of cases below  0.4 centile is  0.6989341  

% of cases below  10 centile is  9.959811  

% of cases below  50 centile is  49.9039  

% of cases below  90 centile is  90.80902  

% of cases below  99.6 centile is  99.42338  

For practical purposes this fit is acceptable, even at the extremes. Based on the SBC there was 

a preference for object mm.fev2. The figure illustrates the centile curves (0.4, 2, 5, 50, 95, 98 

and 99.6 centile) for this model. Note the use of expression() to obtain the subscripts and 

superscripts in the y-axis label. 
 

centiles(mm.corr2, xvar=mm$age, cent=c(0.4, 2, 5, 50, 95, 98, 99.6), 

col.centiles=c("green","blue","red","black","red","blue","green"), 

legend=FALSE, ylab=expression(FEV[1]/height^k~~(L/m^k)), xlab="(Age (yr)", 

main="", points=TRUE, pch=20, col="gray", plot=TRUE, lwd=2, las=1) 

 Figure 11 

Finally a look at the ‘worm plot’ (wp()).Worm plots8, i.e. de-trended Q-Q plots, also provide 

information about the goodness of fit. The figure below shows the deviations as a function of 

age, subdivided over 20 cells. 

                                                             
8  van Buuren S, Fredriks M. Worm plot: simple diagnostic device for modelling growth reference curves. Stat Med 2001; 20, 

1259–1277. 
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wp(mm.fev2, xvar=mm$age, n.inter=20) 

 

    Figure 12 

 

Each of the 20 panels shows the 95 percent confidence interval. As data become scarcer, the 

interval becomes broader towards the extremes, so in the tails larger differences between 

theoretical and empirical quantiles are acceptable. In general the mean values of empirical and 

theoretical quantiles agree well, and with some exceptions the graphs have a horizontal trend, 

suggesting a normal distribution and acceptable fit.  

 

Other distributions 

With the BCPE distribution one can also model kurtosis. 
mm.bcpe <- gamlss(fev ~ log(height) + pb(log(age)), sigma.fo =~ pb(log(age)), 

nu.fo =~log(age), tau.fo=~log(age),family = BCPE(mu.link = "log"), data=mm) 

This model requires df=26 and produces an intermediate SBC: 5536.619; the coefficient for 

tau is not significant (see summary(mm.bcpe)), suggesting that there is no platy- or 

leptokurtosis. 
 

For practical purposes there is no relevant improvement in SBC. Use plot(mm.bcpe), and you 

will notice a very slight improvement in the skewness. But any improvement is primarily 

beyond +3 and -3 z-scores, which is unimportant in clinical practice.  

 

Finally the normal distribution: 
mm.no <- gamlss(fev ~ log(height) + pb(log(age)), sigma.fo =~ pb(log(age)), 

family = NO(mu.link = "log"), data=mm) 

This produces an SBC: 5553.863, slightly larger than that for mm.fev2 (5536.89), obtained 

with the BCCG distribution. This confirms the earlier finding that with the BCCG distribution nu 

= 1, i.e. a normal distribution. 

Conclusion: the BCCG distribution is well suited for our analyses. 

 

We argued that log transformation of height and FEV1 was called for, and modelled 

accordingly. Let us put this to the test. First no transformation of the FEV1 (mu.link = 

"identity").  
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ca <- gamlss(fev ~ log(height) + pb(log(age)), sigma.fo =~ pb(log(age)), nu.fo 

=~log(age), family = BCCG(mu.link = "identity"), data=mm) 

Error in dBCCG(y, mu = mu, sigma = sigma, nu = nu, log = TRUE) :  

  mu must be positive 
 

Assuming normality, i.e. nu = 1. 
cb <- gamlss(fev ~ log(height) + pb(log(age)), sigma.fo =~ pb(log(age)), 

nu.start = 1, nu.fix = T, family = BCCG(mu.link = "identity"), data=mm) 

Error in dBCCG(y, mu = mu, sigma = sigma, nu = nu, log = TRUE) :  

  mu must be positive 
 

No transformation of height. 
cx <- gamlss(fev ~ height + pb(log(age)), sigma.fo =~ pb(log(age)), nu.fo 

=~log(age), family = BCCG(mu.link = "log"), data=mm) 

GAIC(cx,mm.fev, k=log(length(mm$fev))) 

 df AIC 

mm.fev2 24.14602 5546.970 

cx 23.92572 5599.032 
 

Two models cannot be fit, and model cx performs poorly. Changing the df led to the same 

error messages for ca and cb. There is no point in using untransformed height or FEV1. 

 
 

Regression terms 

One can plot regression terms against their predictors, with standard errors: 
term.plot(mm.fev2, what="mu", se=TRUE, partial=FALSE, col.term="black", 

col.se="black", las=1) 
 

Figure 13 depicts the age spline for the predicted value (mu), Figure 14 the contribution of the 

age spline for variability (sigma). Please note that in GAMLSS the effect of age is presented as a 

linear term plus the age spline. The dotted lines represent the 95 percent confidence interval. 

    Figure 13 
 

 

term.plot(mm.fev2, what="sigma", se=TRUE, partial=FALSE, col.term="black", 

col.se="black", las=1) 
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    Figure 14 
 

 

term.plot(mm.fev2, what="nu", se=TRUE, partial=FALSE, col.term="black", 

col.se="black", las=1) 

Error in seq.default(len = p) : argument 'length.out' must be of length 1 

This instruction was submitted unthinkingly. In mm.fev2 we forced nu to be 1, so there is no 

reason to expect any partial residuals. 
 

 

Generating predicted values 

Once the model has been decided upon, it is a simple matter to generate predicted values. 

Remember that fev was log transformed with the log link, hence exponentiation is required to 

obtain the predicted values: 
mm$predictfev <- exp(predict(mm.fev2)) 
 

Similarly one can generate z-scores for each measured value: 
mm$zfev <- resid(mm.fev2) 
 

In many cases one would like to show the predicted value as a function of age, but in that case 

one will have to substitute a typical height for age. We generate that as follows, using a simpler 

model than for FEV1: 
mm.height <- gamlss(height ~ pb(log(age)), sigma.fo =~pb(log(age)), family = 

NO, data=mm) 
 

We must add (age-specific average) height to age, otherwise calculating the predicted value for 

FEV1 will not work, as it is based on height and age.  
p <- data.frame(age=6:94) 

p$height <- predict(mm.height, newdata=p, data=mm) 

plot(p$age, p$height, las=1, xlab="Age (yr)", ylab="Predicted height (cm)", 

type="l", lwd=3) 
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    Figure 15 
 

We can now use p to predict the FEV1: 
mm.predfev <- exp(predict(mm.fev2, newdata=p, data=mm)) 

plot(p$age, mm.predfev, las=1, xlab="Age (yr)", ylab="Predicted FEV1 (L)", 

type="l", lwd=3) 

 Figure 16 

 The following displays the coefficient of variation as a function of age (again we must 

exponentiate, as the link for sigma was log): 
mm.cov <- exp(predict(mm.fev2, what="sigma", newdata=p, data=mm)) 

plot(p$age, mm.cov, las=1, xlab="Age (yr)", ylab="Coeff. of variation", 

type="l", lwd=3) 
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    Figure 17 

 

 

Implementing the prediction equations in software 

Since we have decided to stick with model mm.fev2, let us look at the output of  
summary(mm.fev2) 

Mu link function:  log 

Mu Coefficients:  Estimate  

 (Intercept) -10.56310 

log(height) 2.27937 

pb(log(age)) 0.04112 

 

Sigma link function:  log 

Sigma Coefficients:  Estimate 

 (Intercept) -2.4830 

pb(log(age)) 0.1237 

 

Nu link function:  identity  

Nu parameter is fixed 

Nu = 1 

 

Therefore: 

mu = FEV1 = exp(-10.56310 + 2.27937·log(height) + 0.04112·log(age) + mu-spline) 

sigma = CoV = exp(-2.4830+ 0.1237·log(age) + sigma-spline) 

nu = 1 

 

The contribution of the splines varies with age. In practice one needs to retrieve that 

information and store it in a look-up table. This information can be retrieved as follows. First 

generate a list for age at 0.25 year intervals; this will allow calculating predicted values with 

sufficient accuracy (see www.lungfunction.org/implementingequations.html). 
p <- data.frame(age=seq(6,94,0.25)) 
 

We must include height in the list, as the prediction equation was based on height and age. The 

value of height is irrelevant, since we are only interested in the age spline component. We 

select a value of 1: when substituted in the equation, log(height) = 0. 

http://www.lungfunction.org/implementingequations.html
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p$height <- 1 
 

Use the new list to predict mu and sigma. 
M <- predict(mm.fev2, newdata=p, data=mm) 

S <- predict(mm.fev2, what="sigma", newdata=p, data=mm) 
 

Subtracting the components defined by the linear terms leaves us with the contribution from 

the age spline. 
p$Mspline <- M - (mm.fev2$mu.coeff[1] + mm.fev2$mu.coeff[3] * log(p$age)) 

p$Sspline <- S - (mm.fev2$sigma.coeff[1] + mm.fev2$sigma.coeff[2] * 

log(p$age)) 
 

Please note that there was no spline for nu. As we are storing a look-up table with 

contributions from a spline, we will record Lspline = 0 
p$Lspline <- 0 

 

We only need age and the contributions from the splines, so let us remove height. 
p$height <- NULL 

 

Write the resulting file to disc. 
write.csv(p, file="LookupTable.csv") 
 

Out of curiosity we can look at the Mspline as a function of age: 
windows(6,5) 

plot(p$age, p$Mspline, xlab="Age (yr)", ylab="Mspline", type="l", lwd=3, 

las=1) 

abline(h=0,lty=3) 

    Figure 18 
 

Now the same for the Sspline (coefficient of variation): 
plot(p$age, p$Sspline, xlab="Age (yr)", ylab="Sspline", type="l", lwd=3, 

las=1) 

abline(h=0,lty=3) 
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    Figure 19 
 

 

These figures demonstrate how the linear age coefficients are ‘adjusted’ by the spline function. 

 

Differences between centres 

The collated dataset that we have analysed derives from 4 centres. One potential concern is 

that there are systematic differences between centres. We can analyse differences between 

centres (predicted mean, variability) by including them in the analysis. First we redefine 

centre as a factor. 
mm$centre <- factor(mm$centre) 

mm.centre <- gamlss(fev ~ log(height) + pb(log(age)) + centre, sigma.fo =~ 

pb(log(age)) + centre, nu.fix=TRUE, nu.start=1, family = BCCG(mu.link = 

"log"), data=mm) 

GAIC(mm.fev2, mm.centre, k=log(length(mm$fev))) 

   df      AIC 

mm.centre 27.85963 5488.92 

mm.fev2   22.21772 5536.89 
 

The SBC improves by 48 units, at the expense of 5½ extra degrees of freedom.  
 

What about the linear coefficients for mu and sigma? 
 

summary(mm.centre) 

Mu link function: log 

Mu Coefficients: 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) -10.350977 0.104291 -99.251 0.000e+00 

log(height) 2.235264 0.021781 102.624 0.000e+00 

pb(log(age)) 0.055127 0.004052  13.606 1.636e-41 

centre1 -0.040922 0.006924 -5.910 3.611e-09 

centre2 -0.035810 0.006211 -5.766 8.545e-09 

centre3 -0.007542 0.007196 -1.048 2.946e-01 

------------------------------------------------------------------- 

Sigma link function: log 

Sigma Coefficients: 

  Estimate Std. Error t value  Pr(>|t|) 

(Intercept) -2.48834 0.05619 -44.2878 0.000e+00 

pb(log(age)) 0.08226 0.01552 5.3000 1.201e-07 
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centre1 0.08315 0.04469 1.8607 6.284e-02 

centre2 0.17747 0.03954 4.4887 7.306e-06 

centre3 -0.02924 0.04529 -0.6456 5.185e-01 

------------------------------------------------------------------- 

Nu parameter is fixed 

Nu = 1 

------------------------------------------------------------------- 

No. of observations in the fit: 5723  

Degrees of Freedom for the fit:27.85963 

 Residual Deg. of Freedom: 5695.14  

 At cycle: 6  

Global Deviance: 5247.872  

 AIC: 5303.591  

 SBC: 5488.92 

 

Conclusion 

The coefficients compare each centre with centre 4, which acts as the baseline. Due to FEV1 

being natural log transformed, the coefficients can be multiplied by 100 and treated as 

percentage differences. Data from centres 3 and 4 are broadly similar. Centres 1 and 2 have a 

3.6-4.0% smaller mean FEV1 than centre 4, and 8-18% larger variability.  
 

Do the age ranges overlap in the various centres? Calculate and save the ranges for later. 
ar <- with(mm, tapply(age, centre, function(x) round(range(x)))) 

ar 

$`1` 

[1]  8 80 
 

$`2` 

[1]  7 89 
 

$`3` 

[1]  6 13 
 

$`4` 

[1] 12 19 
 

Centres 1 and 2 cover a wide age range, centre 3 school children, centre 4 adolescents.  

Display and save the predicted values respecting the age range in the various centres. First 

establish the overall range of predicted values. 
p <- data.frame(age=c(6:94)) 

p$height <- predict(mm.height, newdata=p, data=mm) 

p$predfev <- exp(predict(mm.fev2, newdata=p, data=mm)) 

windows(6,5) 

plot(range(p$age), range(p$predfev), las=1, xlab="Age (yr)", ylab="Predicted 

FEV1 (L)", type="n", bty="l") 
 

Then for each centre create the predicted values over the relevant age range, plot them, and 

save the data frames in p1, p2 etc. 
for (i in 1:4) { 

 p <- data.frame(age=seq(ar[[i]][1], ar[[i]][2], 1)) 

 p$height <- predict(mm.height, newdata=p, data=mm) 

 p$centre <- i 

 p$predfev <- exp(predict(mm.centre, newdata=p, data=mm)) 

 with(p, lines(age, predfev, col=c("black", "blue", "green", "red")[i])) 

 assign(paste('p', i, sep=''), p) 

} 
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    Figure 20 

 

The differences between centres can be due to many reasons: different population sample, 

adherence to protocol, trained or untrained subjects, quality control, training of lung function 

technicians, etc. In this case it seems that children and adolescents have a slightly higher FEV1 

for age and height than adults. Should you be able to contact the different centres you would 

learn that the children and adolescents had performed spirometry on many occasions and 

were therefore well trained, unlike the adults who were naïve with respect to spirometry. 

One can depict the difference in variability between centres in the same way as above. 

 

 Finally, clean up: 
dev.off() 

q() 
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APPENDIX 

Cubic splines versus penalised beta splines 

There are two alternative ways to fit splines: cubic splines cs() and penalised beta splines 

pb(). With cs() one needs to specify the required degrees of freedom (df) for the spline, 

while pb() estimates the df itself. The procedure for cs() is to start with e.g. df=0 (no 

smoothing) and successively increase the df until the SBC is minimised. With very large 

datasets (>10,000 observations) you may receive the warning 'The output df are different 

from the input, change the control.spar'. In that case increase the upper limit in c.spar, for 

example c.spar=c(-1.5, 2.5) or c.spar=list(-1.5, 2.5). These parameters for 

c.spar (the default is c.spar=c(-1.5, 2))were obtained empirically: too narrow or too 

wide ranges produce warnings; using different data you may need different values. Type ?cs 

for more information.   

Occasionally you may find that for small df, increasing the df does not reduce the SBC. You 

may be tempted to choose the model with the smallest df, but it may be only a local minimum. 

Therefore it is a good idea to increase df to, say, up to 10 for mu, to avoid stopping at a local 

minimum. 

As you will see, estimating the optimum df for µ, σ and ν can be quite time consuming, so you 

may be tempted to start with a fairly high df. We do not recommend that, as a minimum SBC 

may occur with fewer extra degrees of freedom. 

 

Let us now examine models which use cs() and the BCCG distribution  We must find the 

optimum df for mu, then for sigma, and finally for nu.  
rm(list=ls(all=TRUE))  

library(gamlss) 

setwd("D:\\LungFunction\\GAMLSS-for-statisticians") 

ALL <- read.csv("data.csv") 

cutbin <- function(x, k) { 

 # x = variable, k = bin width 

 # mid-bin labels are multiples of k 

 k2 <- k / 2 

 b <- seq(floor(min((x - k2) / k)) * k, ceiling(max((x - k2) / k)) * k, k) 

 cut(x, breaks=b + k2, labels=b[-1]) 

} 

ALL$ageintrvl <- cutbin(ALL$age, 2) 

Select data on males. 
mm <-ALL[ALL$sex == 1, ] 

 

The first model is a simple linear one as the degrees of freedom for the age spline is 0 (a more 

formal notation would be …….. + cs(log(age),df=0, ...........) 
a0 <- gamlss(fev ~ log(height) + cs(log(age),0), family = BCCG(mu.link = 

"log"), data=mm) 

GAMLSS-RS iteration 1: Global Deviance = 6143.252  

GAMLSS-RS iteration 2: Global Deviance = 6149.307  

Error in RS() : The global deviance is increasing  

 Try different steps for the parameters or the model maybe inappropriate 

In addition: There were 50 or more warnings (use warnings() to see the first 

50) 
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Type warnings() and you will see the message 
Warning messages: 

1: In gamlss.cs(data[["cs(log(age), 0)"]], z, w, spar = NULL,  ... : 

  The output df 3.71242338858787  are different for the input 2 

change the control.spar 
 

As suggested above change the script into 
a0 <- gamlss(fev ~ log(height) + cs(log(age),0, c.spar=c(-1.5, 2.5)), family = 

BCCG(mu.link = "log"), data=mm) 

Warning message: 

In RS() : Algorithm RS has not yet converged 

The above parameters for c.spar were obtained empirically and are valid for this dataset: 

narrower or wider ranges produce warnings. 
 

Another error message. The default number of convergence cycles is 20, and is defined in 

gamlss.control().  Increase the number of iterations: 
con <- gamlss.control(n.cyc=200) 
 

If you want to speed up calculations you might relax the convergence criterion. The default 

value is 0.001, but you might want to use: 

con <- gamlss.control(n.cyc=200, c.crit=0.01) and return to the default value when 

you are finished choosing your model. 
a0 <- gamlss(fev ~ log(height) + cs(log(age),0, c.spar=c(-1.5, 2.5)), 

control=con, family = BCCG(mu.link = "log"), data=mm) 

.............. 

GAMLSS-RS iteration 26: Global Deviance = 7614.611  

GAMLSS-RS iteration 27: Global Deviance = 7621.273  

Error in RS() : The global deviance is increasing  

 Try different steps for the parameters or the model maybe inappropriate 
 

We previously saw the relationship between log(age) and log(fev) (Figures 1 and 4), and there 

was no reason to expect a satisfactory fit from a linear equation (df=0 for log(age)).. So let us 

skip a0. Since it is such a waste of time having to re-analyse after warnings, let us 

systematically use c.spar() and con.  
a1 <- gamlss(fev ~ log(height) + cs(log(age),1, c.spar=c(-1.5, 2.5)), family = 

BCCG(mu.link = "log"), control=con, data=mm) 

GAMLSS-RS iteration 1: Global Deviance = 6670.791  

GAMLSS-RS iteration 2: Global Deviance = 6678.086  

Error in RS() : The global deviance is increasing  

 Try different steps for the parameters or the model maybe inappropriate 
 

Let us skip a1 as well. 

 Rather than writing out these models one by one, we use a script that fits models a2 to a11 as 

follows, where the number defines the df: 
for (i in 2:11) assign(paste('a',i,sep=’’), gamlss(fev ~ log(height) + 

cs(log(age), i, c.spar=c(-1.5, 2.5)), family = BCCG(mu.link = "log"), 

control=con, data=mm)) 
 

One might prefer to use the function update(). In this case we start with a3 as follows: 
for (i in 3:11) assign(paste('a', i, sep=''),  

 update(get(paste('a', i-1, sep='')), . ~ . + cs(log(age), i, c.spar=c(-1.5, 

2.5)))) 
 

By typing summary(a2) ... summary(a11) one obtains the summary statistics for each object, 

and can then compare the SBCs. However, that is cumbersome. Instead use GAIC() (see main 
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text) where k = log(length(mm$fev)), which gives us the SBC. Even though the output 

says AIC, you are shown the SBC of each object. 
GAIC(a2,a3,a4,a5,a6,a7,a8,a9,a10,a11, k=log(length(mm$fev))) 

 df AIC 

a9  14.001614 5627.366 

a8  13.001850 5628.062 

a10 14.999733 5629.479 

a11 15.997457 5633.261 

a7  11.998841 5633.570 

a6  11.001072 5647.482 

a5  10.001030 5677.134 

a4   9.000944 5736.570 

a3   7.999327 5849.945 

a2   6.999460 6085.134 

This command can be generated automatically by including all objects whose names are a 

pattern starting with ‘a’ and followed by a number. The function GAICpatt() does this. 
GAICpatt <- function(patt, k=2) eval(parse(text=paste('GAIC(', 

paste(ls(envir=parent.frame(), patt=patt), collapse=','),', k=', k, ')', 

sep=''))) 

GAICpatt('^a[0-9]', k=log(length(mm$fev))) 
 

Model a9 comes out best (df=9 for the age spline). Hence proceed and model sigma, finding 

the optimal df by fitting models b1 to b5. 
for (i in 1:5) assign(paste('b', i, sep=''), gamlss(fev ~ log(height) + 

cs(log(age), 9, c.spar=c(-1.5, 2.5)), sigma.fo =~ cs(log(age), i, c.spar = 

c(-1.5, 2.5)), family = BCCG(mu.link = "log"), control=con, data=mm)) 
 

Compare SBC in models whose filenames start with ‘a’ or ‘b’ followed by a number. 
GAICpatt('^[ab][0-9]', k=log(length(mm$fev))) 

 df AIC 

b3  18.000553 5522.220 

b2  17.000971 5523.755 

b4  19.002460 5524.361 

b5  20.002591 5528.499 

b1  15.001517 5541.735 

a9  14.001614 5627.366 

a8  13.001850 5628.062 

a10 14.999733 5629.479 

a11 15.997457 5633.261 

a7  11.998841 5633.570 

a6  11.001072 5647.482 

a5  10.001030 5677.134 

a4   9.000944 5736.570 

a3   7.999327 5849.945 

a2   6.999460 6085.134 
 

So df=3 is optimal for the sigma spline.  

If the data are normally distributed, nu=1. We can force GAMLSS to accept that value via 

nu.fix=T, nu.start=1, and see whether that provides a good fit.  
c0 <- gamlss(fev ~ log(height) + cs(log(age),9, c.spar=c(-1.5, 2.5)), sigma.fo 

=~ cs(log(age),3, c.spar=c(-1.5, 2.5)), nu.fix=T, nu.start=1, family = 

BCCG(mu.link = "log"), control=con, data=mm) 
 

We proceed modelling nu as a function of log(age) by fitting models c1 to c4. 
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for (i in 1:4) assign(paste('c', i, sep=''), gamlss(fev ~ log(height) + 

cs(log(age), 9, c.spar=c(-1.5, 2.5)), sigma.fo =~ cs(log(age), 3, c.spar = 

c(-1.5, 2.5)),  nu.fo =~cs(log(age), i,  c.spar=c(-1.5, 2.5)), family 

= BCCG(mu.link = "log"),  control=con, data=mm)) 
 

Compare SBC in models whose filenames start with ‘a’, ‘b’ or ‘c’ followed by a number. 
GAICpatt('^[abc][0-9]', k=log(length(mm$fev))) 

 df AIC 

c0  17.000841 5517.539 

b3  18.000843 5522.220 

b2  17.000971 5523.755 

b4  19.002460 5524.361 

b1  16.001091 5528.302 

b5  20.002591 5528.499 

c1  20.001229 5536.086 

c2  21.000421 5544.218 

c3  22.000169 5551.867 

c4  23.001535 5559.014 

a9  14.001614 5627.366 

a8  13.001850 5628.062 

a10 14.999733 5629.479 

a11 15.997457 5633.261 

a7  11.998841 5633.570 

a6  11.001072 5647.482 

a5  10.001030 5677.134 

a4   9.000944 5736.570 

a3   7.999327 5849.945 

a2   6.999460 6085.134 

Object c0, with nu=1, comes out as the best fitting model, judged by the SBC, signifying that the 

distribution was normal. But does c0 provide a good fit? 
 

Let us look at the coefficients of the equation: 
summary(c0) 

Family:  c("BCCG", "Box-Cox-Cole-Green")  

 

Call:  gamlss(formula = fev ~ log(height) + cs(log(age), 9, c.spar = c(-1.5,   

    2.5)), sigma.formula = ~cs(log(age), 3, c.spar = c(-1.5,   

    2.5)), family = BCCG(mu.link = "log"), data = mm, nu.start = 1,      

nu.fix = T)  

 

Fitting method: RS()  

------------------------------------------------------------------- 

Mu link function:  log 

Mu Coefficients: 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) -10.66928 0.092949 -114.79 0.000e+00 

log(height) 2.30200 0.019952 115.38 0.000e+00 

cs(log(age), 9, c.spar = c(-1.5, 2.5))    

 0.03817 0.003765 10.14 5.883e-24 

------------------------------------------------------------------- 

Sigma link function:  log 

Sigma Coefficients: 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) -2.4816 0.04180 -59.374 0.000e+00 

cs(log(age), 3, c.spar = c(-1.5, 2.5)) 
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 0.1239 0.01341 9.241 3.359e-20 

------------------------------------------------------------------- 

Nu parameter is fixed 

Nu =  1  

------------------------------------------------------------------- 

No. of observations in the fit:  5723  

Degrees of Freedom for the fit:  17.00084 

      Residual Deg. of Freedom:  5705.999  

                      at cycle:  5  

  

Global Deviance:     5370.443  

            AIC:     5404.445  

            SBC:     5517.539  

******************************************************************* 

Warning messages: 

1: In vcov.gamlss(object, "all") : 

  addive terms exists in the mu formula standard errors for the linear terms 

maybe are not appropriate 

2: In vcov.gamlss(object, "all") : 

  addive terms exists in the  sigma  formula standard errors for the linear 

terms maybe are not appropriate 

3: In summary.gamlss(c0) : 

  summary: vcov has failed, option qr is used instead 

All coefficients are highly significant. As shown in the above output, in general we should 

interpret the probabilities with caution; the analyses comprise linear and additive terms, so 

the estimated standard errors may not be appropriate. How to interpret the age coefficient for 

mu will be addressed later. 
 

The following command delivers a wealth of information. 

The following script is the default in plot.gamlss and produces a beige background 
# op <- par(mfrow = c(2, 2), mar = par("mar") + c(0, 1, 0, 0), col.axis = 

"blue4", col.main = "blue4", col.lab = "blue4", col = "darkgreen", bg = 

"beige") 

This script produces a white background  
op <- par(mfrow = c(2, 2), mar = par("mar") + c(0, 1, 0, 0), bg = "white")   

plot(c0, xvar=mm$ageintrvl, par=op) 

    Figure 21 
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The quantile residuals as a function of the fitted values disclose that the quantile 

(standardised) residuals are evenly distributed over the predicted values (upper left). There is 

some age dependency of variability (upper right). The frequency density plot (lower left) is 

compatible with a normal distribution with some skewness to the right, which is confirmed in 

the Q-Q plot (lower right). The distribution appears to be very good (i.e. the Q-Q plot is linear) 

between z-scores -3 and +3, which covers the 99.7 percent confidence interval of the mean; for 

practical purposes this is a satisfactory fit to the data. 

The analyses are sensitive to outliers, so it is always good to look for them. The Q-Q plot in the 

figure above is informative, but do inspect the range: 
range(resid(c0)) 

 [1] -4.104653  4.856759 
 

Worm plots also provide information about the goodness of fit. The figure below shows the 

deviations as a function of age, subdivided over 20 cells. 
wp(c0, xvar=mm$age, n.inter=20) 

 

    Figure 22 

 

Each of the 20 panels shows the 95 percent confidence interval. In general the mean values of 

empirical and theoretical quantiles agree well, and with few exceptions have a horizontal 

trend, suggesting a normal distribution and good fit. Repeat this exercise for height:  
wp(c0, xvar=mm$height, n.inter=15) 
 

We have now run the analyses with cs() and pb(). Here is a comparison of the SBCs: 
GAIC(c0, c1, c2, c3, c4, mm.fev2, k = log(length(mm$fev))) 

  df AIC 

c0 17.00084 5517.539 

c1 19.00084 5528.102 

mm.fev2 22.21772 5536.890 

c2 21.00135 5544.226 

c3 22.00133 5551.875 

c4 23.00169 5559.015 

Object c0, obtained with cs(), comes out best.  

 

Quit: 
q() 
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Conclusion: On the basis of this evidence the cubic spline produces a somewhat more 

parsimonious model than the penalised B-spline. However, cs() is far more cumbersome and 

time-consuming to use, as illustrated above. Also, the difference in the SBC is not dramatic. 

Finally, pb()is the current spline model in GAMLSS. Given these practical considerations, on 

balance pb() is to be preferred as the default.  

 

Graph of two age distributions 

We produced a graph of the age distribution in males (Figure 6, page 11). Often one would 

prefer to simultaneously display the distribution for males and females. Here is how to do that. 

Read the comma separated file with the data, and create the data frame ‘ALL’.  
ALL <- read.csv("data.csv") 
 

Create a data frame containing the frequencies at 2 year age intervals by sex. Note this uses the 

script cutbin() defined earlier. 
freq <- with(ALL, table(cutbin(age, 2), sex)) 

agedistr <- data.frame(cbind(age=as.numeric(rownames(freq)), freq)) 
 

Now plot the axes for the graph. 
with(agedistr, plot(range(age), range(freq), type="n", bty="n", xlab="Age 

interval (yr)", ylab="Number of subjects", lwd=2, cex.lab=1.3, 

cex.axis=1.1, xaxp=c(0,100,10), yaxp=c(0,800,4), las=1)) 
 

Draw vertical lines for the frequencies by sex, thickness 4, offset ±0.5 and using different 

colours.  Consult ?par under ‘Color specification’ for more information.  
for (i in 1:2) lines(agedistr$age+c(-.5,.5)[i], agedistr[,i+1], lend="square", 

lwd=4, type="h", col=c("black","gray")[i]) 
 

Add a legend to explain the columns. Use c() for grouping arguments. 
legend("right", c("Males     (N=5,723)", "Females (N=7,106)") , bty = "n", col 

= c("black", "gray"), lty = "solid", lwd=4, cex = 1.1) 

 

    Figure 23 
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