Patterns of lung function abnormalities in smokers as possible manifestation of "early" COPD phenotypes

Federica Albicini1, Laura Carrozzini2, Francesco Postilli2, Erica Gin1, Federica Albicini1, Amelia Grossi1, Ferruccio Aquilini2, Rosanna Niniano3, Federica Imberti4, Eric Tsama Tegomo1, Marta Agnesi3, Antonio Fores3, Isa Cervetti1, 2Respiratory Diseases Department, Foundation IRCCS "San Matteo" Hospital, Pavia, Italy; 2Cardiothoracic and Vascular Department, University Pulmonary Unit, University Hospital, Pisa, Italy; 3Respiratory Pathophysiology Unit, Sesto San Giovanni Hospital, Sesto San Giovanni, Italy

The notion that the earliest manifestation of COPD is an increase in gas trapping, with a decreasing VC that forces the FEV1 to decline with it, has been recently re-evaluated [1]. To assess the prevalent patterns of lung function abnormalities in smokers at the onset of COPD, we evaluate cross-sectional data of a longitudinal study on 321 non-outpatient smokers (mean age 55±10 years; 60% males) belonging in part to a smoking cessation program and in part to a lung cancer screening study. Smoking history and chronic respiratory symptoms were collected, and spirometry and lung volumes were determined, according to standardized protocols. Mean pack-years were 38±22 and 38% of the smokers reported chronic cough and/or phlegm and/or dyspnea; they were significantly older and smoked more pack-years than those without symptoms (for both p<0.0001). Mean value of all lung function parameters was within the normal range, however lung function abnormalities were observed in 43% of smokers: 15% had FEV1/VC<lower limit of normal and FRC >115% predicted, 19% had only airflow obstruction and 9% had an isolated increase in FRC without airflow obstruction. A similar pattern of increase in gas volume was found regardless the presence of respiratory symptoms or by considering either RV or RV/TLC. In conclusion, air trapping is not the prevalent pattern of lung function abnormalities in these two groups of outpatient smokers. Isolated airflow obstruction or isolated increase in air trapping could be an "early" expression of two different phenotypes of COPD.

Reference:

Airway distensibility with lung inflation following allogeneic haematopoietic stem-cell transplantation (HSCT)

Angelo Corsico1, Matteo Fode1, Pasquale Pio Pompilio2, Andrea Bacigalupo3, Giovanni Bartolomeo4, Pasquale Pio Pompilio2, Andrea Bacigalupo3, Riccardo Pellegrino4, Alex Cioè1, Raffaele Della Cia2, Claudia Brusasco3, Emanuele Crimi1, Teresa Lamparelli3, Vito Brusasco1, 1Fisiopatologia Respiratoria, IRCCS AOU San Martino - IST, Genova, Italy; 4Respiratory Diseases Department, AO Santa Croce e Carle, Cuneo, Italy; 5Anestesiologia e Rianimazione, IRCCS AOU San Martino - IST, Genova, Italy

Background: In uncomplicated HSCT, absolute lung volume is reduced but the ability to reverse induced bronchoconstriction by deep-breath is enhanced.

Aims: To study whether this effect may be due to increased airway distensibility.

Methods: 23 subjects were studied before and 1-3 and 3-6 mo after HSCT. Resistance (Rrs) and reactance (Xrs) of the respiratory system were measured by FOT (5, 11 and 19 Hz) at FRC and TLC. The ratio of changes in respiratory conductance (Grs) from FRC to TLC to changes in lung volume (ΔGrs/ΔVL) was used to estimate airway distensibility.

Results: Grs at FRC was larger at all frequencies whereas Xrs at 5 Hz was less negative after than before HSCT (Figure 1). TLC was decreased by 5±2% whereas FRC was not changed. ΔGrs/ΔVL was steeper after than before HSCT (P<0.001), without differences after salbutamol (Figure 2, interrupted lines).

Airway caliber and distensibility are increased after HSCT, likely due to an increased distending force of lung parenchyma.

Conclusions: Airway caliber and distensibility are increased after HSCT, likely due to an increased distending force of lung parenchyma.
P862

An integrative and comprehensive approach to evaluate lung mechanics in seated and upright positions

André Albuquerque, Pedro Caruso, Renata Pletsch, Pauliane Santana, Leticia Cardenas, Andre Apanaucius, Gabriel Rozin, Marcello Macchiione, Joao Marcos Salge, Carlos Carvalho. Respiratory Department, Heart Institute (Incor) - University of Sao Paulo Medical School, Sao Paulo, Brazil

Ventilatory and sensorial differences have been found between treadmill and cycle in respiratory diseases. However, there are still many doubts about lung mechanics in these two body positions.

Methods: 5 male healthies were evaluated at quite breathing (QB) and voluntary hyperventilation (VH) in seated (ST) and upright (UR) with transdiaphragmatic pressure (Pdi) - oesophageal and gastric sensors, electromyography (RMS) of sternocleidomastoid, Intercostal, Rectus abdominis and External Abdominal Oblique (OBlEMG), ribcage (RC) and abdominal (Ab) 6-b dimensional movement by inductance (VBox), and flow measurement (L/min).

Results: At QB in ST with similar flows, we found: the chest wall movement was mainly the Ab, with similar Pdi than UR (20.9 vs 28.1 cmH2O) but with a lower gastric pressure (12.3 vs 21.9cmH2O, NS). Inspiratory muscles accessory were poorly recruited in both positions, but UR lead to higher activity of abdominal muscles (p<0.08).

During VH: the chest wall increase was mainly dependent of RC in ST, while in UR the contribution of RC and Ab was the same. Despite the incPes was equivalent (305 vs 295%) in both positions during VH, gastric pressure augmented more in ST than UR (169 vs 109%, NS). Finally, VH in ST resulted in similar recruitment of inspiratory muscles but superior of exp muscle (incOBlEMG 118% vs 83% NS) than UR.

Conclusion: Seated is characterized by greater contribution of Ab to chest wall movement due to the lower gastric pressure and also lower exp muscle recruitment than UR. During hyperventilation, the increase of Ab contribution was also greater in ST. Ab compartment is more recruited and less contributing to chest wall mechanics in UR.

P863

Relationship between patient pulmonary function, exercise capacity and quality of life in chronic obstructive pulmonary disease (COPD)

Christopher Jeanes, Claire Brockwell, Allan Clark, Andrew Wilson. Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom

Background: Six minute walking test (6MTW) and spirometry predict survival & morbidity in COPD. Impulse oscillometry (IOS) is superior to spirometry in preclinical studies in COPD. The aim of this cross sectional study was to explore the relationship between spirometry, IOS and airways resistance using the interrupter technique (RINT) versus 6MWT and health related quality of life (HRQOL).

Methods: Thirty-two (20 male) patients mean age 66yrs with COPD completed 6MWT, 7 IOS and 6MTW with measure- ment of walking distance and desaturation and St George’s respiratory questionnaire (SGRQ). Spearman’s rank correlation was used to examine the relationship between the measurements.

Results: Peripheral and small airways resistance and RINT were associated with 6MWD and desaturation.

Correlation Co-efficients for pulmonary function vs disease activity

<table>
<thead>
<tr>
<th>Pulmonary function measure</th>
<th>6 minute walk distance</th>
<th>Change in oxygen saturation</th>
<th>St George’s questionnaire activity score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirometry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1</td>
<td>0.50</td>
<td>0.62</td>
<td>-0.39</td>
</tr>
<tr>
<td>FEV1% predicted</td>
<td>0.25</td>
<td>0.7</td>
<td>-0.39</td>
</tr>
<tr>
<td>Impulse Oscillometry</td>
<td>-0.46</td>
<td>0.54</td>
<td>0.51</td>
</tr>
<tr>
<td>R5</td>
<td>-0.29</td>
<td>0.58</td>
<td>0.42</td>
</tr>
<tr>
<td>R20</td>
<td>-0.49</td>
<td>0.52</td>
<td>0.45</td>
</tr>
<tr>
<td>Interceptor technique</td>
<td>-0.47</td>
<td>0.63</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Total (R5) central (R20) small (R5-20) airways resistance.

IOS outcomes were more strongly associated with St George’s activity score than FEV1 or RINT. Other components of SGRQ were not correlated with any physiological measures evaluated.

Conclusion: Although IOS was better than spirometry at predicting HQOL; IOS and RINT were no better at predicting 6 minute walk distance than FEV1 and were inferior to FEV1’s predicted at predicting 6 minute walk desaturation.

P864

Expiratory capnography in brown Norwegian rat: Feasibility and effect of acute bronchoconstriction

Maithu Guihart1, Loic Deurguilliers2, Franck Robidul1, Françoise Rougier1, François Marchal1, Bruno Chemel1, Sam Bayal1, 1Pédiatrie EA4285 UMR01, University of Picardie Jules Verne Medical Faculty, Amiens, France, 2Pediatric Cardiology and Respiratory Medicine, Amiens University Hospital, Amiens, France; 3EA 3450 Faculté de Médecine, Université Henri Poincaré, Vandoeuvre les Nancy, France

Rationale: The phase III slope of the expiratory volumetric capnogram (S3v) has been shown to increase with bronchoconstriction in asthmatics (ERJ 1994:7:318-323), however, the mechanisms involved remain speculative. We assessed the feasibility of expiratory capnographic slope analysis during acute bronchoconstriction in an experimental model in rat.

Methods: Rats undergoing a separate study were divided into 2 groups: sensitized to ovalbumin (OVA) and exposed either to air or to NO2, 10 ppm, 6h/d, 5d/wk for 4 weeks. 24h after exposure, animals were anesthetized and mechanically ventilated. Respiratory mechanics were measured using multiple linear regression. S3v and HRQOL were measured at baseline and after infusion of methacholine (MCH) (15µg/kg/min i.v.). End-tidal capnograms were recorded during tidal breathing using a rapid CO2 analyzer. The S3v was computed and averaged in a minimum of 10 respiratory cycles in each condition.

Results: Respiratory system resistance (Rs) and elastance (Es) significantly increased in response to MCH. Similarly, S3v increased during MCH infusion. This increase was significantly larger in NO2-exposed animals.

Table 1

<table>
<thead>
<tr>
<th>m±SD</th>
<th>Air-OVA (n=4)</th>
<th>NO2-OVA (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rs (cmH2O/ml)</td>
<td>0.89±0.05</td>
<td>1.47±0.49*</td>
</tr>
<tr>
<td>Es (cmH2O/ml)</td>
<td>3.81±0.35</td>
<td>6.65±0.98*</td>
</tr>
<tr>
<td>S3v (ml/min/ml)</td>
<td>2.43±0.07</td>
<td>3.32±0.46</td>
</tr>
</tbody>
</table>

*p<0.05 vs. baseline, within a group; #p<0.05 vs. Air-OVA, within a condition, by Kruskall- Wallis ANOVA on ranks.

Conclusions: Measurement of S3v is feasible in rat, and significantly increases following bronchoconstriction. This new experimental model will allow further study of the mechanisms associated with the increase in S3v.

P865

Effects of thoracic gas compression on airway responsiveness in asthma

R. Torchio1, A. Antonelli2, C. Gulotta1, E. Cirmi1, C. Cirmi1, V. Bruscaso2, R. Pellegrino2, 1Lab. Fisiopatologia Respiratoria Centro Sonto, AOU S. Luigi, Orbassano, TO, Italy; 2Fisiopatologia Respiratoria, Universite, Genova, Italy

Background: The response to a bronchial challenge is usually assessed from the changes in the forced expiratory in 1 s (FEV1). Yet this measurement is negatively affected by the thoracic gas compression. Aim: To examine the effects of thoracic gas compression on the dose-response curve to methacholine (MCH) in asthma.

Methods: 28 male and 25 female asthmatic patients participated in the study. Methacholine challenge was performed in a flow-type body plethysmograph to compute simultaneously FEV1 and compression-free FEV1 (FEV1, PLETH). The doses of MCH that caused a decrease in FEV1 and FEV1, PLETH by 20% of control were calculated by linear interpolation of the dose-response curve and transformed into natural logarithm.

Results: On average, InPD20FEV1 was significantly less that InPD20FEV1, PLETH (5.49±0.94 vs. 5.74±1.00, p<0.001). The difference between InPD20FEV1 and lnPD20FEV1, PLETH was positively correlated with absolute TLC (r=0.40) and height in cm (r=0.27), and it was larger in males than in females (0.34 vs. 0.14, p<0.001).

Conclusions: Thoracic gas compression has a significant effect on airway responsiveness, which depends on absolute lung volume and, thus, anthropometric characteristics.

P866

Change of CP location during bronchodilatation

Ole Pedersen1, Riccardo Pellegrino2, Pasqualle Pomplio3, 1Institute of Public Health, University of Aarhus, Denmark

Background: The wave-speed concept of flow limitation predicts a unique relationship between the MFSP-curve and the tube laws of the airways containing the choke points (CP). If the frictional pressure loss (Pf) cannot be neglected J = Pe - Pf must be substituted for Pe. Aim: 1) To analyse data from Lambert et al. (JAP 52:44-46) in terms of motion of CP during expiration. 2) To measure upstream viscous pressure losses (Pp) and J = Pe - Pf (Comprehensive Physiology Volume 1, 2011: 1861-1881). The relationship between cross-sectional area (A) and transmural pressure (Ptm) – the tube laws were calculated from the relationship between V_max and J.

Abstract printing supported by G. Chiesi Visit Chiesi at Stand B2.10
Results: Bronchial dilatation increases maximal flow in all cases, but Pfr increases in two cases and decreases in two. Pfr increases when density dependence DID decreases, and increases when DID decreases. The A-Penum curves show an irregular application of these elastic properties of the more and more peripheral airways containing the CP during the expiration. Central and peripheral airways could be detected in each case. In three of four subjects CP at 50% FVC moved to more central airways after bronchodilatation.

Conclusion: The magnitude of Pfr is small, and the study is inconclusive. However, the study indicates that CP moves centrally in 3 of the 4 subjects with bronchodilatation. More experiments are needed.

P867 Lung-packing and stretching increases vital capacity in recreational freedivers
Orn Johansson, Erika Schagaty. Department of Engineering and Sustainable Development, Mid Sweden University, Östersund, Sweden

Introduction: Lung volume is as an important factor for apneic diving performance. A driver’s lung volume is larger than in matched controls. Some of this effect is likely due to predisposition, but elite divers often use stretching and “lung packing” in their training to improve lung capacity. Our aim was to study the effects on vital capacity of a training program involving a series of maneuvers typical of freedivers training.

Methods: Subjects were 13 recreational freedivers with a mean (SD) height; 179cm (8.4), weight; 73kg (13.8), age; 23 years (9.7), training apneic diving in average 1-2 h per week, and 8 matched control non divers. The diver’s lung training involved a set of 5 different lung exercises with yoga and lung packing maneuvers 5 times a week for 11 weeks. Subjects VC was measured before and after the training program using 3 maximal expirations for slow VC, with the largest volume used.

Results: Mean (SD) VC had increased across the training period, from 5.9 (1.4) to 6.9 (1.5) liters (P<0.01). An increase in VC was observed in all but 1 subject. In the control group mean (SD) VC was 4.6 (0.7) L in test 1 and 4.7 (0.8) L in test 2 (NS), showing that the effect in divers was likely not due to retesting.

Discussion: The training used by elite divers, involving lung packing and stretching, may improve VC in recreational divers, despite previous dive training. The increase is more than twice as great as that previously obtained with only lung packing (Johansson et al. 2017). The main mechanism responsible could most likely be reduced chest recoil after stretching.

Conclusions: We conclude that vital capacity can be improved by training.

P868 Low-density lipoprotein cholesterol is associated with inspiratory capacity to total lung capacity ratio in AECOPD patients
Xiaoming Bi, Li Zhao. Respiratory Department, Beijing institute of Respiratory Medicine, Beijing, China

Introduction: Air trapping leads to a reduction in inspiratory capacity/total lung capacity (IC/TLC) ratio in patients with chronic obstructive pulmonary disease (COPD). Knowledge of the effects of low IC/TLC ratio (IC/TLC <0.25) on nutritional status and respiratory impairment during acute exacerbations of COPD (AECOPD) is limited.

Material/Methods: In 108 patients admitted to the hospital due to an AECOPD (75% male; median age, 72 years [interquartile range (IQR), 65 to 76 years]; FEV1, 44.5% <0.01, ANOVA). An increase in VC was observed in all but 1 subject. In the control group mean (SD) VC was 4.6 (0.7) L in test 1 and 4.7 (0.8) L in test 2 (NS), showing that the effect in divers was likely not due to retesting.

Results: Mean (SD) VC had increased across the training period, from 5.9 (1.4) to 6.9 (1.5) liters (P<0.01). An increase in VC was observed in all but 1 subject. In the control group mean (SD) VC was 4.6 (0.7) L in test 1 and 4.7 (0.8) L in test 2 (NS), showing that the effect in divers was likely not due to retesting.

Discussion: The training used by elite divers, involving lung packing and stretching, may improve VC in recreational divers, despite previous dive training. The increase is more than twice as great as that previously obtained with only lung packing (Johansson et al. 2017). The main mechanism responsible could most likely be reduced chest recoil after stretching.

Conclusions: We conclude that vital capacity can be improved by training.

P869 Assessment of eucapnic voluntary hyperventilation response in asymptomatic SCUBA divers
Jad Hobeika, Claude Poitier, Nicolas Germain-Lacroix. Department of Respiratology, CHUM Hôtel-Dieu de Montréal, Montréal, QC, Canada

SCUBA diving is a popular, yet potentially dangerous sport. Exercise, increased oxygen partial pressure and gas density, as well as saline microaeropations are a few factors that may precipitate bronchoconstriction in SCUBA divers. The resulting air entrapment may have catastrophic consequences such as pneumomediastinum, and tympanic perforation. Eucapnic voluntary hyperventilation (EVH) has been increasingly used to evaluate the risk of exercise-induced bronchoconstriction (EIB). However, result interpretation has been hampered by the lack of data pertaining to the expected response of asymptomatic individuals to EVH, as well as the lack of a defined gold standard. 10 asymptomatic SCUBA divers having performed at least ten dives in the last three years, with no diving-related respiratory complications in the past, were identified and asked to perform an EVH and a symptom were questioned and performed EVH. The average subject was 29.56 years old. Average FEV1 and FEV1/FVC values were 3.62L and 0.80, respectively. EVH was performed using a standardized approach as suggested by Aoyama et al. All participants reached a satisfactory voluntary minute ventilation defined by attaining a minute ventilation greater than 30 times the FEV1; for 6 minutes. Post-EVH FEV1 values decreased in all but one participant by an average of 4.67% (Range: 0 - 8%). In conclusion, our data provides evidence that EVH is a specific test; moreover, post-EVH FEV1 decreases of less than 10% is an appropriate cut-off in ruling out EIB in low-risk individuals.

P870 Effects of airway smooth muscle activation and unloading on short-term variability of inspiratory impedance in healthy and asthmatic subjects
Alessandro Gobbi1, C. Gulotta2, Raffaele Dellacà1, Pasquale Pompillo1, A. Antonelli1, R. Tonchis1, P. Paroli1, L. Duto1, C. Crini1, V. Brenasocisco2, R. Pellegrino3, Bioingenegoria, Ptoilecico di Milano University, Milano, Italy; 2MAR I, AOUI, S. Luigi, Orbassano, TO, Italy; 3Pulmonologia Respiratoria, Ospedale S.Croce e Carle, Cuneo, Italy; 4Lab FPR e Centro Sommo, AOUI, S. Luigi, Orbassano, TO, Italy; 5Aestesia Respiratoria, Ospedale S.Croce e Carle, Cuneo, Italy; 6Medicina d’Urgenza, Ospedale S.Croce e Carle, Cuneo, Italy; 7Pneumologia, Università, Catania, Italy; 8Fisiopatologia Respiratoria, Università, Genova, Italy

Background: Short-term temporal variability of respiratory impedance is increased during asthma.

Aim: To examine whether airway smooth muscle unloading alters the pattern of bronchoconstrictor response as assessed by changes in inspiratory reactance (Xrs) and resistance (Rrs).

Methods: 14 mild asthmatics and 9 healthy male subjects were studied at control conditions, during methacholine (MCH)-induced bronchoconstriction, after chest wall strapping and during MCH-induced bronchocclusion with chest wall strapped. Rrs and Xrs were measured at 5 Hz by forced oscillation technique. Rrs and Xrs variability over 5-min periods were estimated from the interquartile range of frequency distribution (RnQR and XrsQR, respectively).

Results: The percent increments of XrsQR with MCH, strapping and unloading were larger than those of RnQR, though statistical significance was achieved only with the combination of strapping plus MCH (p<0.01, ANOVA).

Conclusions: Activation of unloaded airway smooth muscle causes greater instability in the airways contributing to the increase in Xrs than in those contributing to Rrs in both healthy and asthmatic subjects, suggesting occurrence of clustered bronchoconstriction.

P871 Acute effects of intermittent and continuous normocapnic hyperpnea on lung function and airway resistance in asthmatics
Philipp E. Eichenberger1, Andrea Kurzen1, Stephanie N. Diener1, Thomas A. Scherrer1, Christina M. Spengler1, 1Exercise Physiology, Institute of Human Movement Sciences, ETH Zurich, Switzerland; 2Institute of Physiology and Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland; 3Lungenzentrum, Hirslanden, Zurich, Switzerland

Introduction: Bronchoconstriction following high-intensity ventilation in dry and/or cold air is often reported in asthmatics. We aimed to investigate the acute effect of intermittent and continuous high-intensity ventilation of humid and warm air on lung function and airway resistance.

Methods: 6 mild-moderate male asthmatics (age: 25±6 SD years, FEV1: 98±11% pred.) performed, on separate days, 6x5min (5min pauses) of intermittent normocapnic hyperpnea (INH) and after INH and CNH were compared to baseline. 14 mild asthmatics and 9 healthy male subjects were studied at control conditions, during methacholine (MCH)-induced bronchoconstriction, after chest wall strapping and during MCH-induced bronchocclusion with chest wall strapped. Rrs and Xrs were measured at 5 Hz by forced oscillation technique. Rrs and Xrs variability over 5-min periods were estimated from the interquartile range of frequency distribution (RnQR and XrsQR, respectively).

Results: The percent increments of XrsQR with MCH, strapping and unloading were larger than those of RnQR, though statistical significance was achieved only with the combination of strapping plus MCH (p<0.01, ANOVA).

Conclusions: Activation of unloaded airway smooth muscle causes greater instability in the airways contributing to the increase in Xrs than in those contributing to Rrs in both healthy and asthmatic subjects, suggesting occurrence of clustered bronchoconstriction.
Conclusion: In mild-moderate asthmatics, 30min of high-intensity intermittent and continuous NH with humid and warm air resulted in no clinically relevant changes in lung function, airway reactivity and resistance. Thus NH by partial rebreathing might be a promising strategy to specifically train the respiratory system of asthmatics.

P872
The relationship between long-term correlations (self-similarity) in PEF and FEV1 in COPD
Gavin Donaldson1, Terence Seemungal2, John Hurst1, Jadwiga Wdowicha1.
1Academic Unit of Respiratory Medicine, UCL Medical School, London, United Kingdom; 2Clinical Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.

Introduction: Detrended fluctuation analysis (DFA) quantifies the rate of decay in self-correlation in a time series with an exponent “alpha” that is related to COPD exacerbation frequency. The relationship between u of different spirometric parameters in the same individual on the same days is not known.

Methods: We examined data from the London COPD cohort on 28 COPD patients who had recorded both FEV1 and FVC and PEF on daily diary cards for 360 days. Measurements were made after medication in the morning. At recruitment, these patients had a mean age (SD) 65.3 (9.3) years; FEV1: 1.08 (0.36) L; FEV1 % predicted 37.3 (14.1); FEV1/FVC ratio 0.43 (12.8). DFA has been described (Frey et al. Nature 438: 667-70, 2005). The analysis was also repeated with data collected during exacerbations removed.

Results: The patients had an α of 0.97 (SD 0.02) for PEF, 0.93 (0.22) for FEV1, and 0.95 (0.23) for FVC. No differences were seen in any of the estimates (p=0.24). Figure 1 illustrates the relationship between alpha for FEV1 and PEF (r=0.69; p<0.001). There was no significant difference if data collected during exacerbations were excluded. PEF α was 0.95 (SD 0.19); FEV1 α = 0.95 (0.19) and FVC α = 0.97 (SD 0.20).

Conclusion: In COPD patients, long-term correlations (self-similarity) exist in daily PEF, FVC and PEF. The estimates of α are similar and linearly related to each other.

P873
Feasibility and safety of mannitol challenge in pre-school children using forced oscillation
Afaf Alhajla1, Shannon Simpson2, Stephen Stick1,3, Graham Hall2,3.
1School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia; 2Paediatric Respiratory Physiology, Telethon Institute for Child Health Research, Perth, WA, Australia; 3Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia.

Background: The mannitol dry powder challenge is used to identify exercise induced bronchoconstriction (EIB) in adults and school-age children. The forced oscillation technique (FOT) is suitable for assessing lung function in pre-school children and can be combined with inhaled challenge testing in this age group.

Aims: This study aimed to assess the safety and the feasibility of a mannitol challenge using FOT in young children with asthma and in healthy controls.

Methods: Healthy children and children with exercise induced symptoms (EIS group) aged 3-7 years were recruited. A mannitol challenge (Andol, Pharmaxis, Australia) was performed. A positive response to mannitol was defined as wheeze on auscultation, persistent cough, SpO2 <90% or increase in respiratory system resistance at Rrs (Rrs) >50% from control. The mannitol challenge was considered safe and feasible for asthmatic children.

Conclusion: Feasible and safe in young children and can be performed safely.

Funded by: ANZSRS Research Grant, Asthma Foundation WA.

P874
Contribution of β2-adrenoceptor to bronchodilatation during exercise in healthy humans
C. Goluta1, A. Antonelli2, R. Torchio1, Alberto Terzi1, L. Bertolaccini1, F. Rolfo1, L. Dutro1, P.G. Agostini1, V. Brusasco1, R. Pellegrino1, Malattie Apparato Respiratorio 1, AOU S. Luigi, Orsino; 2Fisiopatologia Respiratoria, Ospedale S Croce e Carle, Cuneo; 3SSD Lab PPR e Centro Sonno, AOU S. Luigi, Orbassano; 4Chirurgia Toracica, Ospedale S.Croce e Carle, Cuneo; 5Cardiologia, Ospedale S.Croce e Carle, Cuneo; 6Medicina d’Urgenza, Ospedale S.Croce e Carle, Cuneo; 7Centro, Cardioologico Monza, Milano; 8Fisipatologia Respiratoria, Università, Genova, Italy.

Background: Exercise in healthy subjects is usually associated with progressive bronchodilatation, which has been attributed to a decrease of vagal tone.

Aim: To examine whether β2-adrenoceptors also contribute to bronchodilatation during exercise in healthy humans.

Methods: 14 healthy male volunteers participated in the study. Maximum exercise test was performed at control conditions and after a non-selective β-adrenoceptor blocker (carvedilol 12.5 mg tablets b.i.d. until heart rate decreased by 10 beats/min at least) or an inhaled β2-adrenoceptor agonist (albuterol 400 mg through a spacer).

Airway function was estimated from the partial flow at 40% of control forced vital capacity (V’p40) at rest and the slope of linear regression of V’p40 vs. minute ventilation (V’E) every 2 min during an incremental exercise test until exhaustion.

Results: After carvedilol, resting V’p40 was not significantly different from control (2.80±0.98 vs. 2.96±1.38 L s⁻¹) but the V’p40 vs. V’E slope decreased from 0.03±0.019 to 0.012±0.014 L s⁻¹ L⁻¹ (p=0.005, ANOVA), suggesting less bronchodilator response to exercise. After albuterol, resting V’p40 significantly increased from control to 4.79±1.68 L s⁻¹ (p<0.001) but did not increase further during exercise (V’p40 vs. V’E slope 0.005±0.012 L s⁻¹ L⁻¹).

Conclusions: In healthy subjects, bronchodilatation during exercise is at least in part mediated by β2-adrenoceptor activation.

P875
Ventilation parameters in asthmatic children after one week at 1400 meters altitude
Alessandro da Ponte, Annarita Tulillo, Bruno Grassi, Mario Canciani. Department of Medical and Biological Sciences, Udine University, Udine, Italy Pediatric Clinic, Udine University, Udine, Italy.

Introduction and background: Bronchial asthma prevalence is increasing. Many triggers are known but little about protective factors.

Aims and objectives: To find out whether 1400 meters altitude could modify ventilation parameters, NO (Nitric Oxide) concentration and clinical symptoms in 13 children after a week of uncontrolled physical activity.

Methods: Thirteen asthmatic children were evaluated at arrival and departure from a mountain resort for: FVC, FEV1, FEF 25-75 and exhaled NO concentration. Unscheduled physical activity were encouraged for eight hours daily.

Results: All the children showed improvement of FVC, FEV1, FEF 25-75.

P876
Airway resistance in COPD
Marion Heiß-Neumann1,2, Dorothe Burggraf1,2, Matthias Wjst1,2, Loemis Ziegler-Heitbrock1,2, EvA Consortium1,2, EvA Study Center, Helmholtz Zentrum München, Gauting, Germany; 1Institute for Lung Biology and Disease, Helmholtz Zentrum München, Neuhberg, Germany.

Chronic obstructive lung disease is characterized by airflow limitation, usually
assessed by forced expiratory maneuvers (FEV1 and FVC). These maneuvers reflect a complex, dynamic relationship between patient effort, muscle strength, elastic recoil as well as airway resistance, which plays a dominant role in airflow limitation. Within the Emphysema versus Airway Disease study (EvA) we examine postbronchodilator values for total resistance, in- and expiratory resistance (Rin, Rex) and specific resistance (sR) in COPD patients (n= 509; GOLD stage I-III, no current smoking).

Mean postbronchodilator values for total airway resistance are higher in patients compared to controls (0.35 vs 0.19 kPa*sec/L). Looking at Rin versus Rex, the increase in patients is mainly due to a higher Rex (mean 0.50 versus 0.22 kPa*sec/L) compared to Rin (0.25 vs 0.15 kPa*sec/L). Specific resistance, which is adjusted for volume to avoid errors because of hyperinflation, is elevated as well (1.64 vs 0.71 kPa*sec/L). All reported differences in mean values are highly significant with p < 1E-15.

Mean values for Rex and sR are remarkably elevated in COPD and show a good association with GOLD stages, so they may be preferred for monitoring of COPD since they are obtained with tidal breathing.

Supported by EU FP7 project # 200605.

P877
The predictive value of inspiratory fraction to exercise capacity in patients with stable moderate to severe chronic obstructive pulmonary disease
Yan Zhang1, Jinning Liu2, Wenlan Yang1, Xianyue Tan1. 1Dept. of Pulmonary Function Test, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; 2Dept. of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China

Objective: To study the relationship between inspiratory-to-total lung capacity ratio or inspiratory fraction to exercise capacity in patients with stable moderate to severe chronic obstructive pulmonary disease.

Methods: Pulmonary lung function test (PFT) and Cardiopulmonary exercise testing (CPET) were tested in 50 patients with stable moderate to severe chronic obstructive pulmonary disease and 34 controls, and measured the parameters of ventilation and gas exchange. The stopped reasons at the end of exercise testing were noted.

Results: (1) IF was significantly associated with peak VO2%pred (r=0.52, p<0.001) in COPD and remained as independent predictor in the final model: peak VO2%pred = 65.9IF + 0.45FEV1%pred + 35.8 (R2=0.39, p<0.001). The sensitivity and specificity of IF for predicting exercise capacity were both better than FEV1%pred. (2) The patients with IF<0.23 had more severe hyperinflation and lower exercise capacity. In the peak exercise, the patients with IF<0.23 had lower peak VE and lower peak VT than the patients with IF>0.23, and their peak breath frequencies had no significant difference.

Conclusion: Inspiratory fraction provides the efficient information to reflect lung hyperinflation and to estimate the exercise capacity in patients with stable moderate to severe chronic obstructive pulmonary disease, and its predictive value is better than FEV1%pred.

P878
Effect of pulmonary rehabilitation on systemic inflammatory markers, muscle cross section area and functional parameters in interstitial lung disease
Balakrishnan Menon1, Vishal Ramsal2, Brijesh Prujapal1. 1Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India; 2Physiology, Vallabhbhai Patel Chest Institute, University of Delhi, New Delhi, India

Introduction: Interstitial Lung Diseases (ILD) are chronic debilitating diseases with severe exercise limitation. We studied the effect of pulmonary rehabilitation (PR) on systemic inflammatory markers, muscle cross sectional area and other functional parameters in patients of ILD.

Aims and Objectives: To evaluate the levels of C-Reactive Protein (CRP), Matrix Metalloproteinase 9 (MMP9), Tissue Inhibitor of Metalloproteinase (TIMP), 6 minute walk distance (6MWD), Mid high Cross Sectional Area on CT (MTCSA<75) and Carbon Monoxide Diffusion Capacity (DLCO) before and after PR in patients of ILD.

Methods: Fourteen patients of ILD were evaluated at baseline and after 4 weeks of standard therapy. Supervised PR along with standard medications was then given for further 8 weeks.

Results: Mean values of CRP changed from 5.76±3.11 to 2.18±1.02 mg/L after rehabilitation [p=0.02]. MMP9 was 838.07±252.37 before and 547.93±168.57 ng/ml after PR [p=0.05]. Mean values of TIMP changed from 182.07±105.07 to 660.43±354.85 ng/ml after PR [p=0.04]. The Mean values of 6MWD changed from 379.43±47.94 to 493.78±47.47 m after PR [p=0.001]. Levels of DLCO changed from 6.23±2.45 to 13.87±3.85 ml/min/mmHg after PR [p=0.05]. Mean values of MTCSA<75 changed from 8026.07±1141.96 to 10182.00±1752.10 mm² after PR [p=0.02]. Significant correlation was obtained between MMP9 and MTCSA<75 [r=0.702, p=0.005] and between 6MWD and DLCO [r=0.764, p=0.001].

Conclusion: Pulmonary rehabilitation causes significant improvement in systemic inflammatory markers, muscle cross sectional area and functional parameters in ILD patients along with significant improvement in gas exchange.