74. How to use technology to provide better critical care

390
The musculoskeletal ultrasound in critical care: Longitudinal evaluation (UK-MUSCLE) study: Severity of acute critical illness determines the degree of muscle wasting
Zaidun Pathanwala1,2,3,4, Jacinta Rawal1, Bronwen Crownsby2,4, Mark Meephil1, Gannami Rattayake1, Paul Siddhu1, Dinesh Shresthina1, Philip Hopkins1, Nicholas Hopkins1, Michael Polkey1, Cristina Vellosio2, Chibeba Agley1, Michael Rennie1, Anthea Rowlesworth5, John Moxham5, Stephen Harridge5, Nicholas Hurt1, Hugh Montgomery1,1 Institute of Health and Human Performance, University College London, United Kingdom; 2NHRR Comprehensive Biomedical Research Centre, Guy’s and St Thomas’ and Kings College London, United Kingdom; 3Hammersmith Hospital NHS Trust, Imperial College London, London, United Kingdom; 4Kings College Hospital, NHS Trust, London, United Kingdom; 5NHRR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom; 6Department of Physiology, University of Nottingham, United Kingdom; 7Centre of Human and Aerospace Physiology, Kings College London, United Kingdom

Acute muscle wasting in critical illness is a major cause of disability amongst intensive care survivors. Limited data exists detailing sequential loss of muscle mass and histological changes. We hypothesised that loss of Rectus Femoris Cross-Sectional Area (RFCSA) would be determined by illness severity and paralleled by reduction in myofibre cross sectional area.

Methods: Critically ill patients were recruited within 24 hours of admission. Serial RFCSA measurements were taken using B-mode ultrasound and stratified by numbers of failed organ systems. Serial vastus lateralis muscle biopsies were performed.

Results: 63 patients were analysed. The greatest RFCSA reduction was observed in patients with multi-organ failure (MOF) (21.5±10.5% vs. 7.2±4.5% in organ failure (SOF); p<0.001). Histological analysis confirmed reduction in type 1 fibre cross sectional area.

Conclusions: Measurement of RFCSA by ultrasound can objectively track muscle loss in critical illness. Patients with single organ failure tend to have preserved RFCSA, whereas patients with multi-organ failure have significant muscle wasting. This observation is supported by the overall loss of cross-sectional area of type 1 fibres.

391
Can lung ultrasound predict prone positioning response in ARDS?
Solene Guimard1, Gwenaël Prais1, Nicolas Bizien2, Erwan L’Her1, 1ICU, University Hospital, Brest, France; 2Pneumology, University Hospital, Brest, France

Introduction: Prone positioning (PP) is an alternative in the management of patients with severe ARDS. Among patients treated with that technique: only 70% are responders as they improve their PaO2/FiO2 but at present we are not able to predict the patient’s responsiveness. The aim of our study was to determine whether the lung aspect observed with US before PP can predict or not the prone positioning response.

Patients and settings: Prospective monocentric study (medical ICU University hospital Brest France) including patients with severe ARDS (PaO2/FiO2 ≥ 70). A standard lung US exam with 12 lung areas to explore (superior/inferior, anterior/lateral/posterior, right/left) was practiced before prone positioning (12 hours according unit’s procedure). Before PP, after 2 hours of PP and 2 hours after turning back the patient supine, haematosis parameters were collected.

Lung aspect was evaluated a posteriori by 3 physicians and graded in 4 stages (normal aspect, and 3 stages of lung compression)

Observation of PaO2/FiO2 ratio course permitted to classify patients as responders or non-responders.

Results: 17 patients were enrolled in the study.
– For the early response: the absence of lung compression in anterior and superior areas is associated with an improvement of PaO2/FiO2 > 20 mmHg, whereas posterior areas aspect is not predictive of the response to PP.
– For the late response, we have not found any relationship between the lung aspect and the pp response.

Discussion: The first analysis showed that lung’s US aspect could predict the patient’s response to PP and could help physician in routine practice to place or not sever ARDS patient in PP.

392
Treatment of hypercapnic respiratory failure with a novel extracorporeal CO2 removal system
Nausherwan Burki1, Raj Mam2, Felix Herth1, Werner Schmid1, Helmut Teschler1, Frank Bonin3, Heinrich Becker2, Winfried Randerath4, Sven Stieglit5, Lars Hagemyer6, Christina Priegnitz6, Michael Peifer7, Stefan Blaa3, Christian Putensen5, Nils Theuerkau1, Michael Quintel1, Omen Moerer1.

Division of Pulmonary & Intensive Care, University of Connecticut Health Center, Farmington, CT, United States; 2Department of Pulmonary & Critical Care, Artemis Health Institute, Gurgaon, Haryana, India; 3Pneumology and Respiratory Care, Thoraxklinik and University Hospital, Heidelberg, Baden-Wurttemberg, Germany; 4Respiratory Medicine, High Dependency Unit, and Center of Sleep Medicine, Ruhrlandklinik, Essen, Nordrhein-Westfalen, Germany; 5Pneumology and Intensive Care Medicine, Asklepios Klinik Barnbek, Hamburg, Hamburg-Nord, Germany; 6Pneumology at the University Witten/Herdecke, Krankenhaus Bethanien, Solingen, Nordrhein-Westfalen, Germany; 7Center for Pneumology, Klinik Donaustauf, Bayern, Germany; 8Anesthesiology and Intensive Care Medicine, University of Bonn, Nordrhein-Westfalen, Germany; 9Anesthesiology, University of Göttingen, Niedersachsen, Germany; 10Anesthesiology and Intensive Care, Thoraxklinik and University Hospital, Heidelberg, Baden-Wurttemberg, Germany

Background: Extracorporeal CO2 removal (ECCO2R), a potentially valuable technique, has not been systematically evaluated in patients with hypercapnic respiratory failure. We describe the application of a novel single venous catheter, low blood flow, ECCO2R device (Hemolung3, Respiratory Assist System, ALang Technologies, Inc.).

Methods: Twenty three hypercapnic patients received ECCO2R: Group 1 (n=7) consisted of patients with chronic obstructive lung disease on noninvasive ventilation (NIV) with a high likelihood of requiring invasive ventilation, Group 2 (n=2) were patients who could not be weaned from noninvasive ventilation, Group 3 (n=11) were patients who could not be weaned from invasive ventilation, and Group 4 (n=3) were patients on invasive ventilation requiring lung protective ventilation techniques.

Results: The device was well tolerated, with complications and rates similar to those seen with central venous catheterization. Blood flow through the system was 343±73.7 ml/min, and ECCO2R was 82.5±15.6 ml/min. Invasive ventilation was avoided in all patients in Group 1 and both patients in Group 2 were weaned; PaCO2 decreased significantly (p<0.003) with application of the device. In Group 3, three patients were weaned, in 3 patients ventilatory support was reduced, and one patient died due to a retroperitoneal bleed following catheterization. In Group 4, lung protective ventilation was enhanced by the ECCO2R device.

Conclusion: This single catheter, low blood flow ECCO2R system provided clinically useful levels of CO2 removal in these hypercapnic patients. The system appears to be a potentially valuable additional modality for the treatment of hypercapnic respiratory failure.

393
Effect of a closed loop ventilation strategy on the duration of ICU stay: A randomized controlled trial (interim analysis results)
Cenk Kinaci1, Ozlem Ediboglu2, Darsun Tatari1, Ennel Telioğlu, Ahmet Budak, Ilhan Naz

Background and aim: There are some studies suggesting that adaptive support ventilation (ASV), a closed loop ventilation mode, shortens the weaning duration in some patient groups. We aimed to investigate the effect of ASV on total duration of mechanical ventilation (MV), weaning and intensive care unit (ICU) stay when compared to pressure controlled ventilation (PCV), a conventional mode.

Materials and methods: Patients who were mechanically ventilated longer than 24 hours were randomized into ASV and PCV. Demographic data and total duration of MV, weaning and ICU stay, total number of manipulations, need for sedation and complications (self-extubation, ventilator associated pneumonia) were compared.

Results: Data are expressed as median (IQR). 96 patients (73 COPD) were enrolled (Group ASV 48 and Group PCV 48). Duration of weaning was 2 hours (2–7) in ASV and 4 hours (2–6) in PCV (p=0.013). Number of manipulations were 2 (1–3) in ASV and 3 (1–6) in PCV (p<0.001). When a subgroup analysis was done only on patients who could be weaned, in addition to the results above, duration of ICU stay was 4 days (3–7) in ASV while it was 7 days (5–10) in PCV (p=0.039).

Conclusion: ASV seems to decrease the staff’s workload, duration of weaning and ICU stay when performed from intubation until extubation. The present study is continuing until the targeted sample size is reached in order to detect the effects of

478
Diaphragm electromyographic activity as a predictor of weaning failure

Marina Dres1, Matthieu Scmitt1,2, Alexis Ferré1, Julien Mayaux1

Thomas Simiowski1,2, Alexandre Demoule1,2,3, Servie de Pneumologie et réanimation Médicale, Assistance Publique Hôpitaux de Paris - Groupe Hospitalier Pitit Salpetrière, Paris, France; 2ER 10, Université Paris 6, France; 3UMRS 974, INSERM, Paris, France

Purpose: To compare breathing pattern descriptors and diaphragm electromyographic activity (EAdi)-derived indices obtained from a Neuromechanical Adjusted Ventilation (NAV) catheter during a spontaneous breathing trial (SBT) in patients successfully (SP) and unsuccessfully (UP) separated from the ventilator and to assess their performance to discriminate these two categories of patients.

Methods: 57 ready-to-wean patients were included in a prospective observational study (35 SP and 22 UP separated from the ventilator). During a 30 minutes SBT (pressure support 5 cmH2O, zero end expiratory pressure), tidal volume (VT) and respiratory rate (RR) were obtained from the flow signal at 3, 10, 20 and 30 minutes. EAdi-derived indices were simultaneously computed: maximum of the EAdi (EAdiMax), area under the inspiratory curve of EAdi (EAdiAUC), the difference between EAdiMax and EAdiMin (DEAdi), EAdiMax/VT, EAdiAUC/VT and DEAdi/VT.

Results: At baseline, breathing pattern was similar in the two groups whereas EAdiMax and EAdiAUC were significantly lower in the success group (p<0.05). In the failure group, RR and RR/VT increased significantly during the trial, VT decreased, whereas EAdiMax and EAdiAUC did not change. At 3 minutes, the areas under the receiver operating characteristic-curve of RR/VT and EAdi-derived indices to predict weaning outcome were: SBSI (0.83), EAdiMax/VT (0.84), EAdiAUC/VT (0.80) and DEAdi/VT (0.82). During the SBT, the coefficient of variation of VT decreased in the failure group while the one of EAdiMax remained unchanged.

Conclusion: EAdi-derived indices provide reliable and early predictors of weaning outcome. However, the performance of these indices is not better than the RR/VT.

Usefulness of selective neutrophil elastase inhibitor, sivelestat, in ALI patients

Seigo Miyoshi1, Ryoo Ito1, Hitoshi Katayama1, Kazunori Irisufe1, Hiroshi Hamada1, Toshimitsu Sowaki1, Norihiko Nakanishi2, Takamori Kanematsu3, Kentaro Dote5, Mayuki Aibiki7, Jitsuo Higaki1

1Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan; 2Department of Health and Sports Medical Sciences, Graduate School of Health Sciences, Hiroshima University, Hiroshima, Japan; 3Department of Respiratory Medicine, Sumitomo Besshi Hospital, Niihama, Ehime, Japan; 4Department of Respiratory Medicine, Ehime Prefectural Central Hospital, Matsuyama, Ehime, Japan; 5Department of Respiratory Medicine, Matsuyama Red Cross Hospital, Matsuyama, Ehime, Japan; 6Intensive Care Division, Ehime University Hospital, Toon, Ehime, Japan; 7Department of Emergency Medicine, Ehime University Hospital, Toon, Ehime, Japan

Background: Neutrophil elastase is known to be an important mediator of acute lung injury (ALI) in systemic inflammatory response syndrome (SIRS). Sivelestat is a neutrophil elastase inhibitor, but the clinical efficacy of sivelestat in patients with ALI associated with SIRS is now controversial.

Methods: A retrospective data analysis of 110 ALI patients with SIRS was conducted to investigate the effects of sivelestat. The clinical efficacy of sivelestat was evaluated based on the survival rate and ventilator free days (VFD) and changes between before and 7 days after administration of sivelestat in PaO2/FiO2 (P/F) ratio, white blood cell count, levels of C-reactive protein and procalcitonin (PCT).

Results: Sivelestat group included 70 patients, and control group included 40 patients without administration of sivelestat. VFD was significantly higher, and P/F ratio significantly improved in the sivelestat group compared to the control group. Univariate analysis showed that administration of sivelestat is not an independent predictor of survival of ALI patients with SIRS. In non-septic patients, there was no significant efficacy of administration of sivelestat on the survival rate, VFD and changes in P/F ratio. In septic patients, the survival rate was significantly higher in the sivelestat group than in the control group (p=0.008). Administration of sivelestat significantly increased VFD and P/F ratio, and reduced the levels of PCT in septic patients.

Conclusion: Our results suggest that sivelestat might have beneficial effect on the respiratory condition of the ALI patients with SIRS. Furthermore, sivelestat administration tends to associate with survival in patients with ALI with sepsis.