452. Limiting factors in exercise

P4432
Gas exchange abnormality during cardiopulmonary exercise test in patients with primary pulmonary hypertension
Xiaoyue Tan1, Jinnan Ling2, Wenlan Yang1, Yan Zhang1. 1Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai; 2Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China

Background: Decline in ventilation and oxygen uptake efficiency is found in patients with primary pulmonary hypertension. Such reduction may sustain from rest to exercise. Our primary hypothesis was that ratio of ventilation to CO2 output (VE/VCO2) and ratio of O2 uptake/ventilation (VO2/VE) would differ between normal subjects and patients during cardiopulmonary exercise testing (CPET).

Methods: We administered incremental cycle ergometry tests to 20 normal subjects and 20 patients. We compared ratio of ventilation to CO2 output (VE/VCO2) and ratio of O2 uptake/ventilation (VO2/VE) at rest, unloaded pedaling, anaerobic threshold, and peak exercise.

Results: Patients had distinguished decreased peak O2 uptake (P < 0.001). The levels and patterns of change for two groups for VE/VCO2 and VO2/VE were significantly distinctive. As hypothesized, the patients group always had markedly higher VE/VCO2 and lower VO2/VE than normal subjects group (P < 0.001). In addition, the fall in VE/VCO2 between rest and peak exercise was slight for patients. In the contrast, the VE/VCO2 distinguishably decreased with exercise for normal subjects (P < 0.001). At the same time, patients had slightly higher VO2/VE at anaerobic threshold than rest. Comparatively, the VO2/VE greatly increased at anaerobic threshold for normal subjects (P < 0.001).

Conclusions: The levels and changes in VE/VCO2 and VO2/VE during CPET are distinctive for patients with primary pulmonary hypertension. CPET provide valuable information for diagnosis and evaluation for primary pulmonary hypertension.

P4433
Exercise training in pulmonary arterial hypertension associated with connective tissue diseases
Ekkehard Gruenig1, Felicitas Maier1, Nicola Ehlen1, Christine Fischer2, Mona Lichtblau1, Norbert Blank1, Christoph Fiehn1, Frank Stöckl3, Felix Prange4, Gerd Stachler4, Frank Reichenberger1, Henning Thüle4, Michael Halank5, Hans-Jürgen Seyfart6, Christian Nagel1. 1Center of Pulmonary Hypertension, Thoraxclinic Heidelberg, Germany; 2Departments of Human Genetics, University of Heidelberg, Germany; 3Rheumatology and Neurology, University of Heidelberg, Germany; 4Rheumatology, ACURA Centre for Rheumatic Diseases, Baden-Baden, Germany; 5Medical Clinic III, Clinic of Darmstadt, Darmstadt, Germany; 6Medical Clinic I, Clinic of Loewenstein, Germany; 7Departments of Pneumology, Universities of Giessen, Germany; 8Departments of Pneumology, Medical Clinic, Dresden, Germany; 9Departments of Pneumology, University of Leipzig, Germany

Background: The objective of this prospective study was to assess short-and long-term efficacy of exercise training(ET) as add-on to medical therapy in patients with connective tissue diseases-associated pulmonary arterial hypertension(CTD-APAH).

Patients with invasively confirmed CTD-APAH received ET in-hospital for 3 weeks and continued at home for 15 weeks. Efficacy parameters have been evaluated at baseline and after 15 weeks by blinded-observers. Survival rate has been evaluated in a follow-up period of 2.9±1.9 years.

Results: Twenty-one consecutive patients were included and assessed at baseline, and after 3 weeks, 12 after 15 weeks. Patients significantly improved the mean distance walked in 6 minutes compared to baseline by 67±52 meters after 3 weeks (p < 0.001) and by 71±35 meters after 15 weeks (p < 0.003), scores of quality of life(p < 0.05), heart rate at rest and maximal workload. Systolic pulmonary artery pressure and diastolic systemic blood pressure improved significantly after...
P4434

Respiratory muscle training (REMT) with normocapnic hyperpnea (NH) improves respiratory muscle strength, exercise performance and ventilatory pattern in COPD patients

Eva Bernardi 1, Luca Pomidori 1, Gaia Mandolesi 1, Gianluca Grassi 2, Annalisa Cogo 1.

Department of Clinical and Experimental Medicine, University of Ferrara, FE, Italy.

Few data are available about the effect of REMT in COPD patients even if it has been shown that REMT improves endurance performance and decreases VE during exercise in healthy subjects.

Aim: To evaluate the effect of 4 weeks of REMT with NH (Spyritor®) on respiratory function and exercise capacity in 23 moderate/severe COPD patients.

Materials and methods: 20 M, 3 F (aged 42-80). Respiratory function tests (FEV1, FVC, MIP), QoL (St George’s Questionnaire), 6MWFT and endurance exercise test (75%-80% of peak-work rate measured during an incremental test and performed to the limit of tolerance, ILIM). 9 of 21 patients were instrumented with a portable indusive plethysmography (LifeShirt System) to evaluate breathing pattern during exercise test. After 4 supervised training sessions, the patients trained at home for 4 weeks: 10 min twice a day with 55% of MVV (FEV1)x0.375.

Results: Results are reported in Tables 1 and 2. 6 patients dropped out (poor compliance).

Ventilatory pattern after REMT, during ILIM, is characterized by a significantly lower trend of VE and RR with a higher TV (p<0.05, ANOVA test).

Conclusion: After a short REMT, COPD patients show an improvement in MIP, QoL, a higher exercise capacity and an intriguing change in ventilatory pattern during exercise, which improves SpO2.

P4435

Reduced oxygen uptake efficiency slope in patients with cardiac sarcoidosis

Wilhelm Ammenwerth 1, Mark A. Klemens 2, Catharina Crolow 1, Jeanette Schulz-Menger 3, Torsten T. Bauer 4.

1. Department of Pneumology, Lungenklinik Heckeshorn, HELIOS Klinikum Berlin-Buch, Berlin, Germany; 2. Institute of Radiology and Nuclear Medicine, HELIOS Klinikum Emil von Behring, Berlin, Germany; 3. Department of Cardiology and Nephrology, HELIOS Klinikum Berlin-Buch, Berlin, Germany

Background: The non-invasive diagnosis of cardiac sarcoidosis (CS) is difficult. Cardiovascular magnetic resonance (CMR) has become a very valuable diagnostic tool in patients with suspected CS, but usually a combination of different tests is used. Oxygen uptake efficiency slope (OUES) is a parameter of cardiopulmonary exercise testing (CPET), which is used as an indicator for cardiovascular impairment. We investigated the predictive value of OUES for the diagnosis of myocardial involvement in sarcoid patients.

Methods: Retrospectively 37 consecutive patients (44.9±13.8 years) with histologically confirmed sarcoidosis and clinical suspicion of heart involvement underwent noninvasive diagnostic testing including CMR. CS was diagnosed according to the guidelines from the Japanese Society of Sarcoidosis and other Granulomatous Disorders with additional consideration of CMR findings. Furthermore, CPET with calculation of predicted OUES according to equations by Hollenberg et al. was carried out.

Results: Patients with CS (11/37; 30%) had a worse cardiovascular response to exercise. OUES was significantly lower in CS-group compared to non-CS-group (59.2±16.2 vs 80.6±15.8; p < 0.001). ROC curve method identified 70%pred. as the OUES cut-off point, which maximized sensitivity and specificity for detection of CS (96% sensitivity, 82% specificity, 89% overall accuracy). OUES < 70%pred. was the single best predictor of CS (OR 67, 95% CI: 6.05 to 734.27, p < 0.001) even in multivariate analyses.

Conclusion: Cardiac involvement of sarcoidosis can be predicted by CPET using OUES. Patient selection for CMR can probably be guided by CPET findings in patients with sarcoidosis.

P4436

Prognostic implications of delayed heart rate recovery from maximal incremental exercise in patients with pulmonary arterial hypertension

Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Respiratory Division, Department of Medicine; Federal University of São Paulo – Paulista School of Medicine (UNIFESP-EPM), São Paulo, SP, Brazil

Rationale: Early recovery from exercise is characterized by a marked reduction in heart rate (HR) due to sudden reintroduction of vagal tone and progressive withdrawal of sympathetic stimulation. HR recovery (HRR) is delayed in pulmonary arterial hypertension (PAH), a disabling condition associated with autonomic dysfunction.

Objective: To investigate the usefulness of HRR to estimate exercise impairment and prognosis in PAH patients.

Methods: We evaluated 72 patients with PAH of varied aetiology (NYHA class I to IV) and 21 age- and gender-matched controls who underwent a maximal incremental cardiopulmonary exercise test (CPET) with HR being recorded up to the 5th minute of recovery.

Results: HR was consistently lower in patients compared to controls (p<0.05).

The best cutoff for HRR in one minute (HRR1min) to discriminate patients from controls was 18 beats (AUC 0.76 [0.66-0.86], p<0.05). ”Normal” HRR1min was associated with a range of maximal and sub-maximal variables indicative of better preserved exercise tolerance (p<0.05). On a multiple regression analysis which considered only CPET-independent variables (6-minute walking distance, NYHA class and PAH treatment), HRR1min was the single predictor of mortality (hazard ratio 95% confidence interval 1.19 [1.03-1.37], p<0.05).

Conclusions: Preserved HRR1min (>18 beats) is associated with less impaired responses to exercise in patients with PAH. Conversely, an abnormal HRR1min response has negative prognostic implications, a finding likely to be clinically useful when more sophisticated analyses provided by a full CPET are not readily available.
endurance training is calculated from maximal load. If this is not known, it might be predicted on the basis of 6-minute walk distance (6MWD). We addressed the reliability of such prediction.

Methods: Within a longitudinal clinical study on the efficacy of rehabilitation, baseline data including 6MWD, maximal work load (Wmax), peripheral muscle force, lung function, fat-free mass (FFM) and dyspnoea (MMRC score) of 255 men with occupational lung diseases (asthma, asthenosis, silicosis, COPD) were evaluated.

Results: 6MWD (mean 502m, SD 92m) correlated (r=0.51, p<0.05) with Wmax (mean 123W, SD 35Watt), without systematic differences between asthmatics, silicotics and COPD. The asthenosis group was evaluated separately since the regression line was different. Muscle force, lung function parameters and MMRC score correlated moderately with Wmax (p<0.05 each). Including all statistically significant predictors the correlation was r=0.76 in patients with obstructive lung function impairment and r=0.61 in asthenics patients. The residual standard deviations of predicted Wmax were 20-28 Watt, depending on the predictors used, and the 95% prediction intervals of Wmax based on the predictor 6MWD 47-65 Watt.

Conclusions: Compared to literature data we observed weaker correlations indicating that a sufficiently reliable prediction of individual Wmax by 6MWD and related measures is not possible. Despite this, the regression lines based on a large sample of subjects might be useful for the comparison of epidemiological studies.

P4439 The relationships between hyperventilation during exercise and symptoms in adults with cystic fibrosis

Daniela Savi1, Mattia Internullo2, Gabriele Vail1, Paolo Marinelli2, Serenella Bertazzi1, Matilde Rolla1, Riccardo Valentino De Biasi1, Salvarosano3, Paolo Palange3, Regional Unit for Fibrosis, Centre-Pediatrics Department, “Sapienza” University of Rome, Italy; 2Public Health and Infectious Diseases Department, “Sapienza” University of Rome, Italy; 3Emergency Medicine, Hospital G.B Grassi, Rome, Italy

Exercise tolerance is reduced in patients with Cystic Fibrosis (CF). Ventilatory limitation, peripheral skeletal muscle weakness and poor nutritional status may contribute to exercise intolerance. The mechanisms of exercise dyspnoea are less understood, but it seems that dynamic hyperventilation may play a role. So we wanted to investigate the role of exercise dynamic hyperventilation on breathlessness (DYS) and leg fatigue (LEG) in CF patients. 17 stable CF patients (32±8SD yrs, FEV1 66.7±0.26), during constant load cycle ergometry at 80% V̇O2 max were studied. Intensity of breathlessness and leg fatigue, by Borg scale, and IC were recorded every 2 minutes. The individual slopes of the change in V̇O2, DYS and LEG vs IC were also computed.

Results: In most patients we did not observe a correlation between changes in IC during exercise vs either DYS (r²=0.004±0.03) or vs LEG (r²=0.35±0.26). In additional analysis, IC correlated with physical activity of the patient. Conversely, we found a close relationship between the rate of increase in DYS per unit change in IC and the rate of increase in LEG per unit change in IC (r²=0.85 p<0.0001). Importantly, we found a good relationship between the baseline IC and TIClim (r²=0.44 p<0.005), but not between baseline FEV1 and TIClim.

Conclusions: CF patients show considerable variation in the rate at which symptoms develop during exercise, suggesting that different physiological processes underlie these symptoms. Baseline IC strongly predict the duration of the endurable tolerance, while the degree of resting hyperventilation is poorly predictive of exercise induced changes in DYS and LEG.

P4440 Exercise capacity and limiting factors in older patients with post infectious bronchiolitis obliterans

Luiz Felipe Frohlich1, Danilo C. Berton1, Paulo J.C. Vieira1, Jorge P. Ribeiro1, Paulo J.Z. Teixeira1, Fernando A.A. Silva1, Internal Medicine, Federal University of Ceara, Brazil; 2Internal Medicine, Health Science Federal University of Porto Alegre, Brazil

Exercise capacity has been poorly studied in patients with post-infectious bronchiolitis obliterans (PHO) and main studies evaluated children with follow-up in older subjects lacking.

We evaluated exercise capacity in older patients with PBO and mechanisms of exercise limitation.

This was a cross-sectional study including the oldest patients of our tertiary care center. Cycle incremental cardiopulmonary exercise tests with investigation of dynamic hyperventilation and exercise induced bronchoconstriction (EIB) were performed.

Sixteen patients were studied with a mean age of 15.3±3.9 (range 10-23) years, and post-bronchodilator (BD) resting lung function (%Spred): FVC 88.9±19.3; FEV1 74.4±27.5, TLC 115.3±10.7, RV 234.6±87.1, DLCO 73.6±11.9. Only 7 patients (43.8%) had reduced exercise capacity (VO2peak<s84±48, pred) of these 5 (71.4%) was <16 years-old. VO2peak was only correlated with age (r=0.58, p=0.01) and DLCO (r=0.66, p=0.01).

With reduced exercise capacity tended to be younger (13.4±3.3 vs 16.8±3.9 years, p=0.09), with greater FEV1 response to BD (18.9±12.8 vs 7.0±11.9%, p=0.08) and lower DLCO (67.8±12.9 vs 81.2±4.9%, p=0.05). No difference were found in relation to ventilatory reserve and dynamic hyperventilation during exercise. Of the 4 patients who presented EIB, 3 (75%) had reduced exercise capacity. Nevertheless, FEV1 alteration post-exercise was not significantly different from those with preserved exercise capacity (17.6±20.3 vs 5.7±6.7%, p=0.20).

In conclusion, it seems that functional alterations of PBO tend to ameliorate with aging. Those with reduced exercise capacity present lower lung diffusion capacity and greater airway obstruction variability.

P4441 Estimation of the exercise ventilatory compensation point by the analysis of the relationship between minute ventilation and heart rate in patients with pulmonary hypertension

Paolo Marnelli1, Roberto Badagliacca2, Matton Bonini1, Roberto Proscia1, Mattia Internullo1, Simona Pascale1, Gabriele Vail1, Paolo Palange3, Carmine Datto Vizzà2, 1Department of Public Health and Infectious Diseases, Lung Function Unit, “Sapienza” University, Rome, Italy; 2Department of Respiratory and Cardiovascular Sciences, “Sapienza” University, Rome, Italy

Background: Incremental cardio-pulmonary exercise test with gas exchange measurement is the gold standard for the identification of the ventilatory compensation point (VCP). It has previously been demonstrated that the change in the slope of increment of minute ventilation over heart rate (ΔV̇E/ΔHR) can be utilized alternately to the ventilatory equivalent for CO2 (V̇E/V̇CO2) method for detection of VCP in healthy subjects. The reliability of this parameter in patients affected by cardiac and pulmonary diseases is still not well elucidated.

Aim: To evaluate the efficacy and reliability of the ΔV̇E/ΔHR in patients with pulmonary hypertension.

Methods: Twenty subjects (11F – 9M; mean age 44±15.8 SD) with a diagnosis of pulmonary hypertension underwent an incremental maximal exercise test on a cycle-ergometer. VO2, V̇E/V̇CO2 were measured breath-by-breath. Heart rate was also registered. Results are expressed as mean±SD.

Results: All patients reached the VCP showing a mean VO2 max % predicted of 55±15%. As in healthy subjects it was possible to identify two different slopes (01 – 02) of the increment in the ΔV̇E/ΔHR in 14 out of the 20 patients tested (0.78±0.2 vs 1.83±1.0 p=0.002). The remaining 6 patients in whom was not detected a significant difference between the two slopes interestingly showed an altered cardic function, as shown by the O2 pulse in the final phase of exercise.

Conclusions: ΔV̇E/ΔHR as a predictor of the VCP, appears to be a useful and reliable method to identify more severe IP patients with an altered cardiac function.

P4442 Critical power for upper limb in patients with COPD

Carla Malaguti1,2, Eduardo Colucci2, Talita Stuchi3, Roberta Ramos1, Luiz Nery3, Simona Dal Corso5, 1Physiology, Federal University of Juiz de Fora, MG, Brazil; 2Pneumology, Federal University of São Paulo, SP, Brazil; 3Rehabilitation Sciences Program, Noce di Julio University, São Paulo, SP, Brazil

Introduction: The determinants of the critical power (CP) for whole-body exercise (lower limbs) in patients with COPD have been previously identified. There are no data concerning its determinants for upper limbs (UL) in this population.

Objective: To characterize the determinants of the CP for UL in patients with COPD.

Methods: Eight patients with COPD (FEV1: 45.1±1.2% of predicted) and seven healthy subjects were assessed. After an arm incremental test on cycle ergometer, three constant workload tests were performed (100%-20%, 90% and 80% of peak workload). From these tests the CP was estimated and an additional test was performed (5-20% above the workload of the estimated CP). Then, CP was determined by the intercept of the linear regression between workload and reciprocal of time for the four tests and was confirmed in a new test. The inspiratory capacity (IC) was measured before and immediately after each test.

Results: There was no significant difference in the CP workload between patients and controls (30.2±12.7 Watts - 59.8±11.4% of peak workload vs 42.2±16.7 Watts - 66.7±4.9% of peak workload, respectively). The oxygen uptake in CP was lower in the COPD group than controls (0.79±0.28 L/min vs 1.20±0.37 L/min, respectively, p=0.05). The patients presented dynamic hyperinflation and substantial reduction of ventilatory reserve for all tests, including the CP test. Despite the ventilatory limitation, all patients were able to sustain exercise at CP for 20 minutes.

Conclusion: The present study shows that the ventilatory constraint is the most important determinant of the CP for UL exercise in COPD patients.

P4443 Physiological responses at critical load on resistance exercise – Effects of aging process

Vivian Maria Arakelian1, Nuno Manuel Frade de Sousa1, Camila do Vale1, Gomes Gaito2, Danucha Bassi Dutra2, Milena Peloso Rizk Sperling1, Flávia Rossi Caruso1, Vilmar Baldissera1,2, Audrey Bogrhi-Silva2,1, 1Interunidades Nefrologia, EESC/RM/EEUR/Unesp, Dois Irmãos, SP, Brazil; 2Physiopathology, Federal University of Sao Carlos, SP, Brazil; 3Physiology Science, Federal University of Sao Carlos, SP, Brazil

Background: Critical load (CL) is a theoretical analysis derived from a series of constant load repetitions until concentric failure during resistance exercise (RE),...
which indicates the transition of moderate to intense exercise. However, it appears the influence of age on differences in CL remains to be investigated.

Aims: The objectives of the study were to: 1) determine the intensity of CL during RE, and 2) evaluate the behavior of cardiorespiratory and metabolic responses during RE at the CL in young and older subjects.

Methods: We evaluated 12 young (23±3 years) and 10 elderly (70±2 years) apparently healthy males, who underwent: 1) a 1 repetition maximum (1RM) test on Leg Press and, 2) on different days, three high-intensity exercise constant load tests (60%, 75% and 90% 1RM) in order to obtain CL by linear regression: load X reverse of time (Tlim = duration of exercise until fatigue).

Results: Absolute values of both the CL asymptote and curvature constant (kg) were significantly lower in elderly subjects (p < 0.05). In contrast, both groups have the same value for CL: 52±14%. As expected, actual oxygen consumption (VO2) and heart rate (HR) values obtained during CL exercise testing were significantly reduced in older subjects. However, percent-predicted aerobic capacity values were significantly higher in older subjects (P < 0.05). In addition, blood lactate ([La–]) corrected to Tlim were greater in younger subjects at all intensities (p < 0.05).

Conclusion: These findings suggest that the despite reduced force production in older subjects, endurance-related parameters are well preserved according to age-adjusted percent-predicted values in apparently healthy males.

Financial support: FAPESP No. 2009/1842-0.

P4444

Impaired cardiac output responses to incremental exercise measured by signal-morphology impedance cardiography in advanced COPD

Luzia Cecchini, Daniela Bravo, Mayron Oliveira, Miguel Rodrigues, J. Alberto Neder. Respiratory Division, Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Federal University of Sao Paulo, SP, Brazil

Background: There is renewed interest in the continuous evaluation of cardiac output (Q'T) during exercise in patients with chronic obstructive pulmonary disease. Cardiopulmonary exercise testing (SMICG) has some advantages over previous impedance methods and it might be useful to track relative changes in exercise Q'T in this patient population.

Objective: To contrast the dynamic changes (Δ) in Q'T as a function of metabolic demand (O2 uptake, ∆O2) in patients with advanced COPD and healthy controls.

Methods: 15 males with COPD (11 GOLD stages III-IV) and 9 gender-matched controls underwent a ramp-incremental test with Q'T being measured by a commercially-available SMICG system (Physioflow™ PF-05, Manatec, France).

Conclusion: Semi-quantitative SMICG measurements indicated blunted Q'T adjustments to rapidly-incremental exercise in patients with advanced COPD - even compared to older healthy controls.

P445

Exercise ventilatory inefficiency is an independent predictor of mortality in patients with pulmonary arterial hypertension

Eleora Ferrari, 1,2, Roberta Ramos 1,2, Jaqueline Arakaki 1,2, Priscila Barbosa 1,2, Erika Treppm 1, L. Eduardo Nery 1, Fabricio Velez 1,3, J. Alberto Neder 1,2

1 Respiratory Division, Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Federal University of Sao Paulo, SP, Brazil; 2 Respiratory Division, Pulmonary Vascular Group, Federal University of Sao Paulo, Brazil

Rationale: An excessive ventilatory (VE) response to CO2 output (V'CO2) during incremental exercise is a strong prognosticator in cardiovascular diseases. The role of ∆VE/∆V'CO2 to predict mortality in pulmonary arterial hypertension (PAH) however, remains to be demonstrated.

Objective: To investigate the value of increased ∆V'E/∆V'CO2 as a negative prognostic marker in PAH.

Methods: 80 patients with PAH who underwent a ramp-incremental cardiopulmonary exercise test (CPET) were followed-up for 5 yrs. ∆V'E/∆V'CO2 slope was calculated to the respiratory compensation point (ΔV'E/ΔV'CO2raspas) or to peak exercise (ΔV'E/ΔV'CO2peak)

Results: 14 patients (17.5%) died of PAH-related causes. Compared to survivors, deceased patients were younger and had lower peak O2 uptake, O2 pulse, and ∆VE/∆V'CO2 (r = 0.7) were divided in 2 groups. Group I (n=8) underwent a 15 days exercise training program associated to an educational program; group II (n=9) underwent to a 15 days educational program. All patients performed blood gases analysis, spirometry, body plethysmography and 6MWT before and after the treatment.

Results: Both groups displayed mild baseline hypoxemia (mean PaO2=71±9 mmHg, and 74±10 mmHg for the control and treated group respectively) and an elevated BMI (43±8 and 38±5 respectively). In the treated group, preliminary data, show a decrease in ADaO2 after the exercise training program (15±5 vs. 24±5 mmHg, p<0.05).

Conclusions: Our data suggest that daytime hypoxemia in obese patients may be partially corrected by a program of exercise training. The mechanism may be related to reopening of microatelectasis.

P4447

Exercise training affects alveolar to arterial oxygen partial pressure difference in obese subjects: Preliminary data

Francesco G. Salerno, Giuseppepin Fumarulo, Maria Aliana, Patrizia Guido, Vincenzo Dighillo, Nicola Sarno, Mauro Carone. Respiratory Division, Fondazione Salvatore Maugeri, IRCCS, Cassano delle Murge, BA, Italy

Background: Obesity is often associated with decreased lung volumes and daytime hypoxemia. The decrease in lung volumes and the decrease in physical activity may favour microatelectasis which may account for at least a part of the decreased observed daytime PaO2.

Objectives: The aim of the study was to investigate the effect of a course of exercise training on the alveolar-to-arterial oxygen partial pressure difference (ADaO2) in obese subjects.

Methods: Seventeen obese subjects (BMI>30) with no evident respiratory diseases (FEV1/FVC < 0.7) were divided in 2 groups. Group I (n=8) underwent a 15 days exercise training program associated to an educational program; group II (n=9) underwent to a 15 days educational program. All patients performed blood gases analysis, spirometry, body plethysmography and 6MWT before and after the treatment.

Results: Both groups showed baseline hypoxemia (mean PaO2=71±9 mmHg, and 74±10 mmHg for the control and treated group respectively) and an elevated BMI (43±8 and 38±5 respectively). In the treated group, preliminary data, show a decrease in ADaO2 after the exercise training program (15±5 vs. 24±5 mmHg, p<0.05).

Conclusions: Our data suggest that daytime hypoxemia in obese patients may be partially corrected by a program of exercise training. The mechanism may be related to reopening of microatelectasis.
(Armband®), QoL questionnaire (AQLQ) and walking test (6MWT) with VE analysis (Spiropalm, Cosmed).

Results: 19 subjects were obese (OB), 17 overweight (OW), 12 normal weight (NW). FEV1% was < in subjects with BMI ≥ 25 (72.1±17 vs 81.5±17, ns). PAL (METs) in OB was < OW and NW (1.3±0.2 vs 1.5±0.3; 1.5±0.2, *) Independently from the severity of obstruction. No difference in QoL was found. OB and OW showed a reduced exercise capacity and SpO2% in comparison to NW.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>SpO2%</th>
<th>Meters</th>
<th>Dyspnea (Borg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB</td>
<td>95.7±0.3*</td>
<td>454.7±47.2*</td>
<td>2.5±2.3</td>
</tr>
<tr>
<td>OW</td>
<td>95.6±0.5†</td>
<td>456±96.4†</td>
<td>2.5±2.1</td>
</tr>
<tr>
<td>NW</td>
<td>97.2±0.3</td>
<td>548±52.5</td>
<td>1.2±1.3</td>
</tr>
</tbody>
</table>

*p<0.05 OB vs NW; †p<0.05 OW vs NW.

No difference in dyspnea Borg scale (0-10).

VE analysis during 6MWT. OB showed a higher maximal increase (%) in VE than NW, independently from the level of obstruction and mainly due to the increase in tidal volume (TV).

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Increase VE (%)</th>
<th>Increase TV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB</td>
<td>108.3±38.3*</td>
<td>93.6±34*</td>
</tr>
<tr>
<td>OW</td>
<td>93.7±38.3†</td>
<td>56.9±41†</td>
</tr>
<tr>
<td>NW</td>
<td>67.9±65.5</td>
<td>59.8±10.2</td>
</tr>
</tbody>
</table>

*p<0.05 OB vs NW; †p<0.05 OW vs NW.

Conclusions: In asthmatics, obesity influences negatively the daily physical activity and exercise capacity through mechanisms which appear independent from the severity of bronchial obstruction.