P3727 Pulmonary haptoglobin (pHp) is a scavenger system preventing arterial leakages
M. Abdullah1, E. Vollmer1, P. Zabel2, N. Reiling3, C. Vock4, T. Goldmann 5
1Clin. d Exp. Pathology, Research Center, Borstel, Germany; 2Clinical Medicine, Research Center, Borstel, Germany; 3Microbial Interface Biology, Research Center, Borstel, Germany; 4Experimental Pneumology, Research Center, Borstel, Germany; 5Center, Borstel, Germany

Haptoglobin is a long known molecule. The recently discovered pHp variant is a local first line immunoregulatory molecule which could play a crucial role as 5 minutes. Due to the well known anti-inflammatory properties of haptoglobin and the capability to bind and neutralize free hemoglobin, we propose pHp to be a local first line immunoregulatory molecule which could play a crucial role in quickly fixing alveolar damages e.g. due to arterial leakage. The signalling leading to pHp-release need to be illuminated, however, the speed makes it easy to speculate about a system that is largely independent from the common pathways such as TLR-signaling.

P3728 Nitric oxide biosynthesis by primary ciliary dyskinesia respiratory epithelial cells is similar to non-PCD patients
Woelf Walker1,2, Claire Jackson1,2, Peter Lackie1, Jane Lucas1,2
1Primary Ciliary Dyskinesia Research Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom; 2Primary Ciliary Dyskinesia Diagnostic Service, Faculty of Medicine, University of Southampton, United Kingdom

Introduction: The mechanism for the extremely low levels of nasal nitric oxide (NO) seen in patients with primary ciliary dyskinesia (PCD) has not been elucidated. A hypothesis has been that the respiratory epithelial cells in these patients do not biosynthesize normal levels of NO. NO is rapidly metabolised to nitrite, which is considered to be a surrogate marker of NO.

Aims: To compare the total nitrite concentrations of differentiated ciliated respiratory epithelial cells from PCD and non-PCD patients at baseline and following stimulation.

Methods: Airway epithelium from PCD and non-PCD patients was obtained by nasal brushing and cultured at air liquid interface (ALI) until differentiated and ciliated. PBS was incubated for 30 minutes on the apical surface of the ALI cultures and total nitrite detected by kit assay (Enzo Life Sciences). Basolateral incubation with 10 μg/ml IL-10/FN/Fx was for 18 hours stimulated NO biosynthesis via nitric oxide synthase (NOS) activity.

Results: Total nitrite concentration in differentiated PCD (n=5) and non-PCD (n=7) cultured epithelium was similar both at baseline, 16.1±1.1 mMol/l and 17.8±3.2 mMol/l respectively (means±SD, p=0.14) and after stimulation; PCD (n=4) 32.0±12.7 mMol/l and non-PCD (n=4) 33.2±11.0 mMol/l respectively (p=0.46).

Conclusion: NO biosynthesis in differentiated ciliated airway epithelium from PCD patients is similar to non-PCD patients at baseline and following NOS stimulation. As nasal NO is increasingly used for screening of PCD, further work assessing the upper airway’s role in the low levels of nasal NO seen is warranted. Data collection continues.

P3729 Epithelial ciliary beating analysis in chronic airway diseases
Mustapha Kamel Kheloufi1, José Geraldo1, Marius Socol1, Jules Dupire1, M. Abdullah1, E. Vollmer1, P. Zabel2, N. Reiling3, C. Vock4, T. Goldmann 5
1Clinique des Bronches, Allergie et Sommeil, APHM Aix-Marseille University, Marseille, France; 2Clinique des Bronches, Allergie et Sommeil, APHM Aix-Marseille University, Marseille, France

Introduction: The mechanism for the extremely low levels of nasal nitric oxide (NO) seen in patients with primary ciliary dyskinesia (PCD) has not been elucidated. A hypothesis has been that the respiratory epithelial cells in these patients do not biosynthesize normal levels of NO. NO is rapidly metabolised to nitrite, which is considered to be a surrogate marker of NO.

Aims: To compare the total nitrite concentrations of differentiated ciliated respiratory epithelial cells from PCD and non-PCD patients at baseline and following stimulation.

Methods: Airway epithelium from PCD and non-PCD patients was obtained by nasal brushing and cultured at air liquid interface (ALI) until differentiated and ciliated. PBS was incubated for 30 minutes on the apical surface of the ALI cultures and total nitrite detected by kit assay (Enzo Life Sciences). Basolateral incubation with 10 μg/ml IL-10/FN/Fx was for 18 hours stimulated NO biosynthesis via nitric oxide synthase (NOS) activity.

Results: Total nitrite concentration in differentiated PCD (n=5) and non-PCD (n=7) cultured epithelium was similar both at baseline, 16.1±1.1 mMol/l and 17.8±3.2 mMol/l respectively (means±SD, p=0.14) and after stimulation; PCD (n=4) 32.0±12.7 mMol/l and non-PCD (n=4) 33.2±11.0 mMol/l respectively (p=0.46).

Conclusion: NO biosynthesis in differentiated ciliated airway epithelium from PCD patients is similar to non-PCD patients at baseline and following NOS stimulation. As nasal NO is increasingly used for screening of PCD, further work assessing the upper airway’s role in the low levels of nasal NO seen is warranted. Data collection continues.
Intraepithelial cell (IEC) cultures obtained from adults and children have provided valuable insight into the underlying signaling mechanisms in airway diseases, but tissue cultured plastic restricts cell growth to a 2D monolayer. Reliance on these traditional platforms restricts cell growth to a 2D monolayer. Reliance on these traditional platforms. In vitro primary cells studies provide insight into the underlying signaling mechanisms in airway disease, but tissue cultured plastic restricts cell growth to a 2D monolayer. Reliance on these traditional platforms are decreasing as current protocols (such as using electroporons matrices) provide a better 3D environment for cells to inhabit in vitro. We are developing a tissue engineered MD model of an airway bronchiolone containing the three main cellular structures (epithelial, fibroblast, and smooth muscle) sourced from both healthy and asthmatic patients. Using defined electroporating parameters we have developed both nano- and micro-fibrous scaffolds to support the cell types within a 3D environment. Once the cell types have been grown on their tailored scaffolds, they are combined to form a simple construct of the bronchiolone and held in a flow perfusion bioreactor to provide effective nutrient exchange and metabolic waste removal. We have optimized a nanofibrous polyethylene terephthalate (PET) electroporons scaffold for epithelial cell growth and differentiation. Fibroblast and smooth muscle cells have been successfully cultured on a microfibrous PET electroporons scaffold. The scaffold system provides a platform to investigate cell-cell interactions within the scaffold, which is impaired in its capacity to transport immunoglobulin (Ig) A. Although COPD is mostly related to cigarette smoking, only a minority of smokers develops this disease and factors of cigarette exposure susceptibility remain not clear. Even though peripheral lymphoid follicles have been described in severe COPD, it remains unknown whether B-cell conditioning is altered in this disease, especially after CSE (Cigarette Smoke Extract) exposure. Objectives: In this study, we report on CSE exposure data using a coculture model of B cells with human primary bronchial epithelium (re)differentiated in vitro in air-liquid interface. Methods: IgA synthesis was studied following CSE exposure in CD19+B cells (purified by immunomagnetic sorting from healthy blood donors) after co-culture for 13 days with a bronchial epithelium from severe COPD patients. B cells were also assessed by flow-cytometry for cell activation and survival. Results: In four independent experiments, we observed that IgA production and cell survival were upregulated in B cells cocultured with the bronchial epithelium, as compared to B cells cultured alone. CSE exposure of the epithelium abrogated these effects, and this was associated with the suppression of TACI induction upon co-culture. Conclusion: These data suggest that a crosstalk exists between B cells and the epithelium with respect to COPD, which could be mediated at least in part through regulation of TACI.
P3736

Do characteristic airway epithelial change precede the development of lung fibrosis? Ectopic epithelial marker protein expression in bleomycin induced fibrosis replicates that seen in bronchiolized epithelium in IPF?

Celin Bingöl1, Bianca Araujo1, Helen Marriott1, William Wallace2, Nikola Hiram3, Lynee Bingöl1, Colin Bingle1, Colin Bingle1, 1Infection and Immunity, University of Sheffield, United Kingdom; 2MRC Centre for Inflammation Research, University of Edinburgh, United Kingdom; 3Clinical Dentistry, University of Sheffield, United Kingdom

The cause idiopathic Pulmonary Fibrosis (IPF) remains elusive but there is support for the view that epithelial cell damage within the peripheral lung initiates the process that ultimately results in fibrosis. Unfortunately, markers of this process remain elusive due in part to most human studies being performed with tissues from end-stage disease. Ectopic expression of the gel forming mucin, MUC5B was recently described as a specific marker for the bronchiolized epithelium seen in IPF and we have shown that it is co-expressed in this region with LPLUNC1 but not with other airway submucosal gland proteins, including Zinc-alpha-2-glycoprotein and Proline-rich protein 4. To shed light on a temporal association of expression of these markers with the development of the disease we studied mucus expression in the proteolytic agent bleomycin (Bleo). MUC5B and LPLUNC1 were co-expressed in a population of goblet cells in the airways of mice within 3-7 days of Bleo exposure, prior to the onset of a fibrosis. Continued expression is seen during the development of fibrosis between 14-21 days post treatment. In contrast, in mice treated with PBS neither protein was seen (due to mouse Airways being essentially free of goblet cells). Staining was absent from the fibrotic regions and the lung parenchyma, as is the case in IPF. Our data show that the ectopic expression seen in human IPF is mirrored by that seen in the Bleo mouse model. Furthermore it suggests that these epithelial remodeling events precede the development of lung fibrosis and these can be studied in mice.

P3737

A unique session of aerobic exercise does not decrease pulmonary inflammation in a murine model of asthma

Ronald Aparecido da Silva1, Francine Maria Almeida1,2, Clarice Rosa Oliveira1,2, Beatriz Manuquette Saraiva1, Milton A. Martins1, Celso Ricardo Fernandes Carvalho1
1Physiopathology Experimental, School of Medicine of University of Sao Paulo, SP, Brazil; 2Clinical Medicine Sao Paulo, School of Medicine of University of Sao Paulo, SP, Brazil; 3Physical Therapy, School of Medicine of University of Sao Paulo, SP, Brazil

Recent studies have shown that long term exercise training reduces airway inflammation however, there is a lack of evidences on the effects of a single session of exercise. Objective: To evaluate the effects of a session of aerobic exercise in the airway inflammation. Methods: Thirty two mice were divided in Groups (n=8): Control (CT), Aerobic Training (AT), OVA and OVA+TA. Groups OVA were sensitized by intraperitoneal injections of OVA (50/30 mice) in the days 0, 14 and 28 followed by 30 min of 1% OVA inhalation (days 21th, 25th, 25th and 28th). CT and AT groups received saline. Exercise (AT groups) was performed in the day 28thor 60 min at 50% intensity of maximal capacity. Bronchoalveolar fluid (BALF), lung tissue and blood were collected on the day 29th. It was evaluated: total and different cells in BALF, IgE and IgG1 titers, peribronchial eosinophils, and airway remodeling (smooth muscle, collagen and elastic fibers, and mucus expression). Eotaxin, RANTES, VEGF, ICAM, VCAM, IL-1β, IL-1α, NF-kb and Foxp3 in the airways were also evaluated. Statistical significance was evaluated by two way ANOVA followed by Bonferroni or Newman-Keuls. Results: OVA increased IgE; and IgG1 levels, total and eosinophil cell counting, and all remodeling features (smooth muscle, collagen and elastic fibers, and mucus expression) (P<0.05). In addition, OVA increased the expression eotaxin, RANTES, VEGF, ICAM, VCAM, NF-kb and Foxp3 (P<0.05). On contrary, a single bout of aerobic training did not changed any of these effects (P>0.05). Conclusion: A single exercise session seems do not have any anti-inflammatory effect in a murine asthma model.

P3738

Aerobic training inhibits leucocytes production of oxidants, pro-inflammatory and pro-fibrotic factors reducing asthmatic phenotype

Milton Arruda Martins1, Celso Ricardo Fernandes Carvalho2,1
1Post-graduation Program in Biophotonics Applied to Health Sciences, Nove de Julho University, Sao Paulo, SP, Brazil; 2Physicotherapy (LIM 14), University of Sao Paulo, SP, Brazil; 3Clinical Medicine (LIM 20), University of Sao Paulo, SP, Brazil

Aerobic training results in beneficial effects to asthmatic patients and also in animal models of asthma. However, the studies have not evaluated yet the effects of aerobic training on the peribronchial leucocytes activation. This study evaluated the effects of 4 weeks of low intensity aerobic training on the expression of inflammatory and fibrotic mediators by peribronchial leucocytes. 32 BALB/c mice divided in 4 experimental groups: Control, Exercise, OVA and OVA+Exercise were sensitized on days 0, 14, 28 and 42 and challenged with aerosolized OVA 1% for 3x/week, beginning on 21st day for 4 weeks. Low intensity aerobic treadmill training started on day 22nd for 4 weeks. 72 hours after last OVA challenge mice were assessed to lung inflammation, levels of IL-5 and IL-10 in BAL fluid by ELISA and for quantitative analysis of peribronchial leucocytes activation. The results showed that aerobic training in sensitized animals resulted in significant decrease of total cells and eosinophils in BAL fluid, decreased level of IL-5 and increased level of IL-10 in BAL fluid (p<0.01), decreased expression of IL-4, IL-5, IL-13 (p<0.001), CC,L5, CCL10 (p<0.001), ICAM-1 and VCAM-1 (p<0.05), GP91phox and 3-nitrotyrosine (p<0.001), NF-kb (p<0.001), INOS (p<0.001), while increased the expression of IL-10 (p<0.001). Concerning the airway remodeling, aerobic training in sensitized animals resulted in decreased expression of TGF-beta, IFG-1, VEGF and EGF (p<0.001). We conclude that aerobic training in sensitized animals results in a direct effect on peribronchial leucocytes reducing the expression of important factors related with the airway inflammation and remodeling.

P3739

Involvement of oxidative and nitrosative stress in the development of proteolytic pulmonary emphysema

Manuelia Lagente1,2, Cristiane Costa1, Tatiana Victom1, Renata Nesi3, Alan Lopes1, Johnais Alves2, Vanessa Martins3, Angelas Resendes4, Vincent Lagente5, Luis Porto6, Samuel Valencia7, 1Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil; 2Pós-graduação em Biologia Humana e Experimental, Universidade do Estado do Rio de Janeiro, RJ, Brazil; 3Pós-graduação em Biociências, Universidade do Estado do Rio de Janeiro, RJ, Brazil; 4INSERM U 991 - Faculté de Pharmacie, Université de Rennes I, Bretagne, France; 5Departamento de Patologia, Universidade do Estado do Rio, RJ, Brazil

Our aim was to investigate the participation of oxidative stress in elastase-induced pulmonary emphysema. C57BL/6 mice were submitted to pancreatic porcine elastase (PPE) instillation (0.05U or 0.5U) per mouse (i.t.) to induce pulmonary emphysema. A separated group of mice were treated with aminoguanidine 1% (AMG). Lungs were collected on days 7, 14 and 21 after PPE instillation. Control group was sham-injected. We performed BAL, biochemical analyses of oxidative stress, and lung stereoscopy and morphometry. Emphysema was histologically characterized at 23 days after 0.5 U of PPE, presenting increase alveolar linear intercept and volume density of airspaces in comparison with the control group. TNF-α was elevated at 7 and 14 days after PPE 0.5 U, concomitant with reduction in IL-10 levels at the same time-points. Myeloperoxidase was elevated in all groups treated with 0.5 U of PPE. A contribution of oxidative stress at early stage of emphysema was observed with increased levels of nitrite, malondialdehyde and superoxide dismutase activity at 7 days after PPE 0.5 U. Glutathione peroxidase activity was increased in all groups treated with 0.5 U of PPE. With INOS inhibition by AMG 1%, emphysema was attenuated. Furthermore, the proteolytic stimulus by PPE enhanced expression of nitrotyrosine and INOS, while the group PPE+AMG showed low expression of INOS and nitrotyrosine. PPE stimulus also induced eNOS expression, but AMG reduced it. Our results suggest a pathway of oxidative and nitrosative stress by nitric oxide production via eNOS expression in pulmonary emphysema.

P3740

The serotonergic receptor subtype 5-HTR1B contributes to the pathogenesis of allergic airway inflammation

Tobias Müller, Ammerger Hüttel, Melanie Gromm, Marco Izzo. Pneumology, University Medical Center Freiburg, Germany

In addition to its well described role in the nervous and cardiovascular system 5-hydroxytryptamine (5-HT), also known as serotonin, has also potential immunoregulatory properties. Furthermore, elevated levels of free serotonin have been detected in the serum of symptomatic asthmatics. However, the exact serotonergic receptor subtype involved has not been elucidated yet. In this study we questioned whether the subtype 5-HTR1B is involved in the pathogenesis of experimental asthma. Expression of 5-HTR1B receptors in lung tissue was analyzed by immunohistochemistry. Allergic airway inflammation was studied in the classical OVA-alum model and in a model of house dust mite (HDM) induced allergic airway inflammation. The experimental induction of allergic airway inflammation led to an increased 682s

Abstract printing supported by G Chiesi Visit Chiesi at Stand B2.10
Conclusion: Epithelial layer permeability.

a reduced elastin mRNA and protein expression in the lung tissue of RAGE wild-type and young-adult RAGE k.o. as well as in wild-type mice. Independent of age, the lungs of RAGE lung system with negative-pressure ventilation at weight-matched constant tidal influx, more IL1-α and TNF-α in their BAL as controls. 30 days after the first elastase treatment CRAMP-ko had a higher mean linear intercept and a significantly decreased pulmonary system resist ance and elastance. MMP-9 expression was increased and the concentration of VEGF was decreased in the elastase treated ko animals. The conclusion was that the antimicrobial peptide CRAMP has a protective function in a model of elastase induced lung destruction. CRAMP-ko animals showed more inflammation, a higher degree of lung destruction as well as a higher expression and activity of MMP-9. The concentration of VEGF was significantly lower in the elastase treated ko animals.

Conclusion: Transplantation of ASC for emphysema rats improved pulmonary function and inhibit alveolar destruction. ASC transplanted rats showed increased lung compliance and improved histopathological changes. Immunohistochemistry revealed some transplanted ASC were localized at damaged alveolar spaces and enlargement of the alveolar airspaces was also inhibited. Transplantation of ASC into the lungs of animals sensitized to OVA and challenged with OVA-aerosols. 5-HTR1B expression was even higher in animals with chronic asthma. This work shows that CRAMP has a protective role in elastase induced lung destruction.

P3741
The antimicrobial peptide CRAMP protects against emphysema
Christian Herr1, Sadak Aliwama2, Rebecca Eschmann3.
Christoph Beißwenger1, Robert Bal1, 1. Internal Medicine V, Pulmonology, Allergology, Respiratory and Environmental Medicine, Saarland University, Homburg, Germany; 2. Internal Medicine, Pulmonology, Allergology, Respiratory and Environmental Medicine, Philipps University, Marburg, Germany

Rationale: COPD is one of the most prevalent causes of death worldwide and is associated with an ongoing destruction of pulmonary structures that finally lead to the development of emphysema. Antimicrobial peptides (AMP) are a part of the innate immune system. The AMP CRAMP is the murine homologue to the human cathelicidin antimicrobial peptide (hCAP-18/LL-37). It plays an important role in angiogenesis, cancer and chemotaxis. This work will show that CRAMP is impaired expression in an elastase-induced model of lung destruction.

Methods: Lung destruction was initiated by two times intratracheal administration of elastase. Ten days after the last administration lung function was measured. Cytokines in BAL were measured by ELISA. The lungs were resected and fixed for stereological analysis. Lung tissue was also used for immunohistochemical staining and RNA-extraction.

Results: Elastase treated CRAMP-ko animals had significantly higher neutrophil influx, more IL1-α and TNF-α in their BAL as controls. 30 days after the first elastase treatment CRAMP-ko had a higher mean linear intercept and a significantly decreased pulmonary system resistance and elastance. MMP-9 expression and activity was increased and the concentration of VEGF was decreased in the elastase treated CRAMP-ko as compared to the elastase treated wildtype mice.

Conclusion: This work shows that the antimicrobial peptide CRAMP has a protective function in a model of elastase induced lung destruction. CRAMP-ko animals showed more inflammation, a higher degree of lung destruction as well as a higher expression and activity of MMP-9. The concentration of VEGF was significantly lower in the elastase treated ko animals.

P3742
Importance of the receptor for advanced glycation end products in the respiratory mechanics
Samira Al-Robaiy1, Karla Pires2, Angelica Bierhaus,1 Department of Cardiothoracic Surgery, University Hospital, Halle (Saale), Germany; 2Internal Medicine, Pulmonology, Allergology, Respiratory and Environmental Medicine, Philipps University, Marburg, Germany

Background: There is an increasing clinical interest in studying the receptor for advanced glycation end products (RAGE) and its soluble forms in pulmonary diseases. Interestingly, RAGE and its soluble forms are preferentially expressed in alveoli thereby challenging the pathophysiological role of RAGE. As we have already shown the importance of RAGE as an adhesion molecule in alveolar cells, this study aimed to investigate the age-dependent physiological significance of RAGE in respiratory mechanics.

Methods: Lungs of young (<6 month), adult (6-9) and old (>24) RAGE knock out (ko.) and wild-type mice were analyzed ex vivo using the perfused isolated lung system with negative-pressure ventilation at weight-matched constant tidal volume. Elastin expression was assessed by gene array and histochromistry.

Results: Dynamic lung compliance increased gradually with the age in RAGE k.o. as well as in wild-type mice. Independent of age, the lungs of RAGE k.o. mice showed higher compliance than that of the wild-type. In this context, old wild-type and young-adult RAGE k.o. mice had similar lung dynamic compliance. According to the effect of RAGE deficiency on lung compliance, we determined a reduced elastin mRNA and protein expression in the lung tissue of RAGE k.o. mice. However, lack of RAGE had no significant effect on airway resistance and epithelial layer permeability.

Conclusion: Our study suggests the physiological importance of RAGE and its soluble forms in mediating an appropriate lung compliance in which its interaction on the elastin expression might play a critical role.

P3743
Long-term exposure to tobacco smoke on alveolar macrophages phenotype with regard to genetic and age predisposition
Svetlana Lyamina, Timofey Vedenkin, Igor Malyshev. Laboratory of Cell Biotechnologies, Moscow State University of Medicine and Dentistry, Moscow, Russian Federation

Core role of tobacco smoke as a risk factor in chronic obstructive pulmonary disease (COPD) is proved, but COPD develops not in every smoker. Study of long-term tobacco smoke on a functional phenotype of alveolar macrophages (AM) with regard to genetically determined macrophages phenotype while aging.

Methods: Experimental COPD reCOPD was simulated in vivo in two genetic mouse strains: C57/B6 (n=40) predominant M1 phenotype, and BalB/c (n=40) M2 phenotype. ECOOP groups included 30 mice, control-10 mice. Tobacco smoking lasted for 6 months-2 cigarettes i.d. COPD was verified histologically. AM functional phenotype was assessed by nitric oxide production (NO) spectrophotometrically.

Results: COPD was confirmed histologically in both eCOPD groups, changes were more expressed in C57/B6. There was no significant difference in basal NO production (bNO) in eCOPD groups, but induced NO production (iNO) significantly decreased during 6 months and was much lower in C57/B6 than in BalB/c. 3.80 ± 0.21 vs 5.53 ± 0.29 mM (p<0.05). There were no differences in initial bNO in both controls, bNO significantly decreased in both controls during 6 months. Aging decreased iNO in both controls - from 26.40±3.2 to 6.60±0.45 mM in C57/B6, and from 19.21±1.20 mM to 7.57±0.72 mM in BalB/c.

Conclusions: We elicited genetic predisposition to COPD risk factor - tobacco smoke, associated with M1 macrophages phenotype and age-related transformation of AM phenotype towards increased M2, increasing with long-term inhalation of tobacco smoke and more expressed in M1 phenotype.

P3744
Cell therapy with adipose tissue-derived stem/stromal cells for elastase-induced pulmonary emphysema in rats
Nakii Fujiya1,2, Terumi Miyazawa1, 1Division of Respiratory and Infectious Diseases, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan; 2Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan

Background: Studies demonstrating lung repair by stem cells or growth factors have been reported in animal emphysema. We focused on adipose tissue-derived stromal/stem cells (ASC) for regenerative medicine, since it has a high potential to secrete multiple angiogenic factors and differentiate various kinds of cells.

Aim: To demonstrate the therapeutic potential of ASC transplantation and to elucidate mechanisms of the effects in rat emphysema models.

Methods: ASC were isolated from rat subcutaneous adipose tissue. Emphysema was induced by intratracheal instillation of porcine pancreatic elastase (PPE). One week after PPE, cell transplantation was performed intravenously. One and 2 weeks after transplantation, we assessed pulmonary function and histopathological changes and measurement of chemokine levels in lung tissue.

Results: ASC transplantation restored pulmonary function to near normal levels and enlargement of the alveolar airspaces was also inhibited. Immunohistochemical analysis revealed some transplanted ASC were localized at damaged alveolar spaces. Vascular endothelial growth factor (VEGF) was significantly reduced by PPE. After ASC transplantation, VEGF level was not reduced. Hepatocyte growth factor (HGF) and cytokine-induced neutrophil chemottractant-1 (CINC-1) levels were significantly higher than PPE.

Conclusions: Transplantation of ASC for emphysema rats improved pulmonary function and inhibit enlargement of the airspaces. Secretion of HGF, VEGF, and CINC-1 by surviving ASC after transplantation may have contributed to lung repair. Cell therapy with ASC may be a new therapeutic strategy to improve pulmonary function and inhibit alveolar destruction.

P3745
Differential effects of atorvastatin, pravastatin, rosuvastatin and simvastatin on lungs from mice exposed to cigarette smoke
Samuel Valença1, Thiago Ferreira1, Alan Lopes2, Denise Cardoso3, Karla Pires2, Luis Portos1, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil; 2Programa de Pós-graduação em Biologia Humana e Experimental, Universidade do Estado do Rio de Janeiro, RJ, Brazil; 3Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, RJ, Brazil

Short-term cigarette smoke (CS) exposure leads to acute lung inflammation through its influence on oxidants/antioxidants imbalance, but lately statins have shown anti-inflammatory and antioxidant effects. Therefore, we aimed analyzing the effects of four different statins on the lungs of mice exposed CS. Male C57Bl/6 mice were divided into six groups (n=8 each): Control, mice exposed to smoke from 12 cigarettes/day/5 days (CS group); exposed to smoke from 12 cigarettes per day for 5
days plus atorvastatin (10 mg/kg/day; CS+A group), or pravastatin (5 mg/kg/day; CS+P group), or rosvastatin (5 mg/kg/day; CS+R group) or simvastatin (20 mg/kg/day; CS+S group); control group was sham-smoked. One day after the last CS exposure, mice were sacrificed, the bronchoalveolar lavage fluid (BAL) was performed and the lungs were removed for histological analysis and homogenized for biochemical analyses. Oxidant levels were reduced in CS+S (p < 0.05); DPPH levels were increased in CS+A, CS+R and CS+S (p < 0.05); nitric levels were reduced in CS+P, CS+R and CS+S (p < 0.01); hydroperoxides levels were reduced in CS+A, CS+R and CS+S (p < 0.001); catalase activity was reduced in CS+P (p < 0.01); SOD activity were reduced in CS+A, CS+P (p < 0.01) CS+R and CS+S (p < 0.05) all when compared with CS group. These results suggest that simvastatin is the best treatment for acute lung injury induced by CS due to reduction of inflammatory and oxidant markers.

P3746
Pulmonary function, oxidative stress and inflammatory markers in LPS-induced acute lung injury: Differential effects of atorvastatin, pravastatin and simvastatin
Samuel Valenca1, Manuella Lanzetti2, Adriana Melo2, Larissa Silva-Neto2, Jackson Alves2, Marina Barroso1, Denise Cardoso1, Alan Lopes2, Romulo Pinto2, Renata Nexus1, Eduardu Trajano2, Giovanna Carvalho4
1 Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil; 2 Programa de Pós-graduação em Biologia Humana e Experimental, Universidade do Estado do Rio de Janeiro, RJ, Brazil; 3 Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, RJ, Brazil; 4 Instituto de Biodiversidade Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil

The present study was designed to determine what statin could attenuate acute lung injury (ALI) induced by lipopolysaccharide (LPS) in C57BL/6 mice. Young male mice (23 g) were divided into 5 groups (n=6 each): injected with LPS i.p. (10 mg/kg); LPS plus atorvastatin (10 mg/kg/day; LPS+A group) or pravastatin (5 mg/kg/day; LPS+P group) or simvastatin (20 mg/kg/day; LPS+S group). Control group received saline (i.p.). In a separated group of mice (n=5) the sum of pulmonary resistive and viscoelastic pressures (ΔPtot) and static elastance (E(st)) were measured. One day later (24 h), the animals were sacrificed, BAL performed and lungs were removed for histopathological analysis and homogenized for biochemical analyses. The amount of leukocytes was lower in LPS+P (p < 0.01) and LPS+S (p < 0.05). Cytokine levels of MCP-1 was lower in LPS+P (p < 0.01) while IL-6 was lower in LPS+P (p < 0.01) and LPS+S (p < 0.05). Redox markers (superoxide dismutase and catalase) were lower in LPS+P (p < 0.01) while IL-6 was lower in LPS+P (p < 0.01) and LPS+S (p < 0.05). Lipid peroxidation (malondialdehyde and hydroperoxides) were lower in all treated groups (p < 0.05). Myeloperoxidase was lower in LPS+P (p < 0.01). DeltaPtot and E(st) were significantly higher in the LPS group than in the other groups. Our results suggest that atorvastatin and pravastatin, but not simvastatin, exhibits anti-inflammatory and antioxidant actions in LPS-induced ALI.