P1440
Connexin 37 and Connexin 43 genotypes in correlation to cytokines in induced sputum and blood in cystic fibrosis (CF)
Olaf Eickmeier1, Michael Ludwig2, Felix Schreiner1, Louis van den Boom1, Michael J. Lentze1, Doris NGampolo1, Ralf Schubert3, Stefan Zielen3, Michael J. Lentze1, Doris NGampolo1, Ralf Schubert3, Stefan Zielen3, Michael J. Lentze1, Doris NGampolo1, Ralf Schubert3, Stefan Zielen3, Michael J. Lentze1, Doris NGampolo1, Ralf Schubert3, Stefan Zielen3

Background: We have provided evidence in previous studies that cytokines (IL-8, TNF alpha, LBP) measured in whole blood correlate negatively with lung function in delta 508 homozygous patients. GAP junction proteins (connexins) might be of importance for the influx of blood cells into the lung. Our aim was to assess the relationship between connexin genotypes, cytokines (IL-8, TNF-alpha and LBP) in induced sputum and blood and lung disease.

Methods: 24 patients homozygous for delta F 508 (median age 20.5 y, m/f 14/10, BMI 20.35 kg/m2, Stphwachman score 75, FEV1(%) 83) were examined. Sequence analysis was performed for GAP junction protein alpha 1 (GJA1/Connexin 43) and gap junction protein alpha 4 (GJA4/connexin 37). Cytokines were assessed in blood and induced sputum (IS) by chemiluminescence (DPC Biermann, Bad Homburg, Germany).

Results: Here we present the first preliminary data: For 18 patients cytokine and sequence data were available. Whereas GJA1 showed only one rare heterozygous SNP (rs13836744) in one patient, four common SNPs were detected in GJA4. Two were synonymous changes, but the third variant (rs41266431) causes a amino acid substitution (GTA valine, ATA isoleucine) as well as the fourth SNP (rs1764391: CCC proline, TCCserine). For rs41266431 patients with homozygosity for the G variant (n=11) had higher IL-8 levels (median: 12.58 pg/ml, p<0.11) in whole blood than those showing heterozygosity for the G/A mutation (n=7).

Conclusion: More patients have to be analyzed to substantiate these findings. For GJA4 the SNP at rs 41266431 seems a promising candidate gene.

P1441
One size does not fit all - Impact of the one liter tidal volume breathing protocol on indices from nitrogen multiple-breath washout in children
Sophie Yannume, Florian Singer, Philipp Latzin. Department of Paediatric Pneumology, University Children’s Hospital of Bern, Switzerland

Background: Nitrogen multiple-breath washout (N2MBW) is a useful tidal breathing lung function test to assess ventilation inhomogeneity (VI), e.g. in Cystic Fibrosis (CF) patients. One liter tidal volume (VT) breathing protocols are regarded to improve comparability of results between subjects breathing at different VT and are widely used in adults. The impact of protocols using fixed VT on results in children is unknown. We assessed whether breathing at fixed VT impacts N2MBW indices in school-aged children.

Methods: Ten children with CF and 16 healthy children performed six N2MBW tests using a validated setup (Exhalyzer D, Eco Medics, Switzerland). Children performed three baseline N2MBW at free tidal breathing and three N2MBW at increased VT with a target of one liter using an incentive. Outcomes were size and variability of lung clearance index (LCI), functional residual capacity (FRC), Scmold and Sacin.

Results: All 26 children achieved six N2MBW. Mean (SD) VT at free tidal breathing was 0.5 (0.1) L, at fixed VT 1.2 (0.2) L. Comparing free tidal breathing with the one liter VT N2MBW, LCI increased on average (95% CI) 0.6-3.9 in CF children and 1.4 (0.5-2.3) in healthy children. LCI increased by more than one LCI unit in 9 out of 10 CF children and in 14 out of 16 healthy children. FRC decreased, Scmold and Sacin increased significantly. Variability within tests and between subjects increased for all MBW outcomes.

Conclusion: Fixed tidal breathing protocols impact N2MBW indices as shown for the one liter VT protocol in school-aged children. Underlying physiological mechanisms and applicability in adult patients require further study.

P1442
Epithelial cell regulation of immunity in cystic fibrosis
Jane Falconer1, Malcolm Brodlie1, Sonya Carnell1, Anthony de-Soyza1, James Lordan2, Paul Corris1, Catharine Hills1, Chris Ward1, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom; 2Institute of Transplantation, Freeman Hospital, Newcastle upon Tyne, United Kingdom

Introduction: Despite clinical importance, the adaptive immune system in cystic fibrosis (CF) lung disease has been sparsely studied.

Methods: We isolated CF primary human bronchial epithelial cells (PBEC) and assessed their modulation of monocyte-derived dendritic cell (moDC) function and downstream T cell activation, hypothesising that epithelial cells skew immunity to favour chronic infection and lung damage in CF. Healthy monocytes were cultured with conditioned medium from 6 steady-state CF patient PBEC during moDC differentiation with IL-4 and GM-CSF.

Results: Compared to control moDC, epithelial cell conditioned moDC were tolerogenic and macrophage-like (↓CD1a, [darr] CD86, ↑CD14 and ↑IL-10), inducing low T cell proliferation and interferon-γ production in an allogeneic mixed
lymphocyte reaction (MLR). Stimulation of PBEC or direct stimulation of moDC with clinically isolated Burkholderia cepacia whole cell lysate gave a mature, highly stimulatory moDC phenotype while Pseudomonas aeruginosa induced poor maturation of both PDC and T cell response.

Conclusion: CF epithelial cells secrete factors which contribute to immune tolerance. CF pathogens may have a variable ability to overcome this regulation and induce an immune response which may favour chronic infection by Pseudomonas aeruginosa.

P1443 Proteases from anaerobic bacteria cleave naturally occurring innate antiproteases in cystic fibrosis

Michelle Murray, David Bergen, Noel Gerald McElvany, Department of Medicine, Royal College of Surgeons of Ireland, Education and Research Centre, Dublin 9, Ireland

Introduction: Cystic fibrosis (CF) results in chronic bacterial pulmonary infection leading to an irreversible decline in lung function and ultimately respiratory failure. There is evidence now that CF infection is polymicrobial and that anaerobic bacteria which are not usually detected by routine culture are responsible for at least in part for pathogenic infection (1).

Aim: We aim to study if proteases from P. melanogenica, the most common anaerobic bacteria found in the CF lung (2), cleave the host innate human antiproteases namely, alpha one antitrypsin (AAT), secretory leukocyte protease inhibitor (SLPI) and elastin.

Method: P. melanogenica is grown and incubated at 37°C in Luria Bertani Broth (LB) broth, and Basal Anaerobic Media (BAM) broth under strict anaerobic conditions in an anaerobic chamber. Recombinant SLPI, Elafin and native AAT were used for selected time points with supernatant and cleavage products visualised by SDS-PAGE electrophoresis and Western Blotting analysis using specific antibodies raised against these antiproteases.

Results: P. melanogenica produces proteases on Day 4,5,6 of incubation and they have distinct cleavage patterns and these cleavage products cleave naturally occurring antiproteases.

Reference:

P1444 Pseudomonas aeruginosa counteracts the host defense functions of MIG/CXCL9

Sandra Jovic1, Killian Hurley1, Wilma Leitch, Nessa Banville, Stephen Cox, Kerstin Pohl, William Leitch, Noella Banville, Noel McElvany. Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland

Introduction: Cystic fibrosis (CF) is caused by a defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. A number of studies have been performed to investigate whether neutrophil dysfunction in CF is primarily as a result of the genetic defect or due to chronic bacterial infection and inflammation.

Aim: The aim of this study was to provide support for intrinsic alterations in CF, specifically to determine whether accumulation of CFTR within the endoplasmic reticulum (ER) of circulating neutrophils from patients with CF leads to ER stress responses including the release of ER calcium (Ca2+) stores. This study focused on the ER-resident chaperone, GRP78 and ATF6, a transcription factor that coordinates the unfolded protein response (UPR).

Methods: Neutrophils were purified from whole blood and the cytosol was analysed using Western blotting for ER stress markers ATF6 and GRP78. Intracellular Ca2+ was determined using a fluorometric assay.

Results: Western blots revealed that markers of ER stress, GRP78 and cleaved ATF6, were increased in neutrophil cytosols of patients with CF homozygous for the AF508 mutation, when compared to healthy controls (n=8 for both groups). In addition, densitometric analysis of immunobands confirmed significant upregulation of both GRP78 and active ATF6 in CF neutrophils compared to control cells (p<0.05). Intracellular Ca2+ was increased in the CF neutrophils compared to healthy controls.

Conclusions: Our data demonstrates for the first time activation of the UPR in vivo in neutrophils isolated from individuals with CF, which may in part explain the exaggerated inflammatory response of these cells.

P1447 Cytokine and chemokine release in response to Pseudomonas aeruginosa (PA), by bronchial epithelium of the native airway and transplanted lung of paediatric cystic fibrosis (CF) lung transplant recipients

Biju Thomas1, PPE, Freestone2, Paul Acton3, Helen Spencer1, Robert Hirst2, G. Williams3, Chris O’Callaghan2,3, 1Paediatric Respiratory Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore; 2Infection, Immunity and Inflammation, University of Leicester United Kingdom, 3Cardiovascular Transplantation, Portex Unit, Institute of Child Health, Great Ormond Street Hospital for Children, London, United Kingdom

Introduction: Infection and inflammation are implicated in the pathophysiology of Bronchiolitis Obliterans Syndrome (BOS), the major cause of mortality following lung transplantation. It is unclear if the cytokine and chemokine release by Cystic Fibrosis (CF) airway epithelium in response to pathogens differs from that of the transplanted lung.

Aim: We hypothesised that there is no difference in the cytokine and chemokine release in response to Pseudomonas aeruginosa (PA), by the epithelium of the native CF airway and the transplanted lung.

Methods: 5 children who had lung transplantations for CF (Great Ormond Street Hospital for Children, London, UK), were studied. Bronchoscopy brushings from above and below the airway anastomosis were cultured to detect Pseudomonas aeruginosa in the bronchial washings. Lungs from 5 children who had lung transplantations for CF (Great Ormond Street Hospital for Children, London, UK) were studied. Bronchoscopy brushings from above and below the airway anastomosis were cultured to detect Pseudomonas aeruginosa in the bronchial washings.

Results: The cytokines and chemokines in the culture supernatants were measured using a multiplex ELISA based protein assay (SECTOR Imager 6000, MSD).

Conclusion: The cytokine and chemokine release in response to pathogens may be contributory to the exaggerated inflammatory response of the CF epithelium.
P1448
Ciliary function of the nasal and bronchial epithelium in children with cystic fibrosis
Binj Thomas1, Paul Aurora1, Helen Spencer2, Andrew Rutman2, Rob A. Hirst2, Chris O’Callaghan1,3,4,5. 1Paediatric Respiratory Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore; 2Infection, Immunity and Inflammation, University of Leicester, United Kingdom; 3Cardiothoracic Transplantation, Portex Unit, Institute of Child Health, Great Ormond Street Hospital for Children, London, United Kingdom

Background: Normal ciliary function is essential in pulmonary defence. It is unclear if there is any difference in ciliary function between the nasal and the bronchial epithelium, in children with Cystic Fibrosis (CF).

Aims: Our aim was to determine if there is any difference in ciliary function between the nasal and the bronchial epithelium, in children with CF.

Methods: 9 children with CF (2 males, median [IQR] age: 14.1 [12.8-15.7] years, median [IQR] duration post transplant: 12 [9.1-15.5] months), who had lung transplant at the GOS Hospital for Children (London, UK) were studied. Nasal brushings and bronchoscopic bronchial brushings from the lower airway above the anastomosis were studied using digital high speed video camera to determine the ciliary beat frequency (CBF) and beat pattern, as described previously. (Tomson et al. Eur Respir J. 2009;34:401-4).

Results: There was no significant difference in CBF or beat pattern between the epithelium of the nose and the lower airway, in children with CF (Table 1). However, the CF nasal epithelium showed significantly lower CBF and higher dyskinesia index compared to that of healthy children (Data published previously).

Table 1

<table>
<thead>
<tr>
<th></th>
<th>CF Bronchial epithelium</th>
<th>CF Nasal epithelium</th>
<th>Healthy nasal epithelium</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBF (Hz)</td>
<td>7.4 [6.9-2.2]</td>
<td>9.5 [7.5-10.8]</td>
<td>13.4 [11.6-14.2]</td>
</tr>
<tr>
<td>Dyskinesia index (%)</td>
<td>42.2 [32.6-56.4]</td>
<td>55.4 [45.8-64.0]</td>
<td>0.0 [0.0-0.0]</td>
</tr>
<tr>
<td>Immotility index (%)</td>
<td>4.1 [3.0-5.9]</td>
<td>0.0 [0.0-11.4]</td>
<td></td>
</tr>
</tbody>
</table>

Data expressed as median [IQR]. *p<0.01 compared to data on healthy nasal epithelium.

Conclusion: There was no difference in ciliary function between the nasal and the bronchial epithelium in paediatric CF lung transplant recipients.

P1449
Detection of antibodies against Pseudomonas aeruginosa in the sputum of cystic fibrosis patients: A pilot study
Krisztina Kelemen, Eszter Csizsér, Imre Barta, Balázs Antus. Pulmonologie, National Kornayi Institute for TB and Pulmonology, Budapest, Hungary

Chronic Pseudomonas aeruginosa (Pa) infection plays a pivotal role in disease progression in patients with cystic fibrosis (CF). The aim of this cross-sectional study was to test whether anti-Pa antibodies can be detected in the sputum using common serological methods.

During routine ambulatory visits blood and spontaneously expectorated sputum samples were obtained from 29 adult CF patients (11 chronically infected with Pa [Pa+]; 10 non-infected [Pa–] and 8 intermittently infected [Pa+/-]). Anti-Pa antibodies (IgA and IgG) in serum and in sputum supernatant were measured with ELISA originally developed for measuring anti-Pa antibodies in serum (Genesis Diagnostics). Data are presented as means ±SEM.

As expected serum IgA levels were elevated in Pa+ patients compared to Pa– patients (20.3 [9.5-9.5] vs. 6.0 [1.5 pg/ml, respectively, p<0.05]). Sputum IgA levels were above the detection limit of the assay in all subjects, and were significantly increased in Pa+ compared to Pa– patients (20.6 [5.6 vs. 8.5 [1.1 pg/ml, respectively, p<0.05]). In Pa+– patients sputum IgA levels were similar to that of Pa– patients (p>0.05). In all subjects serum and sputum IgA levels showed a close correlation (r=0.525, p<0.01). The specificity and the sensitivity of the assay in sputum were 70 and 72%, respectively, as compared to 44 and 90% in serum. Sputum IgG antibody concentrations remained under the detection limit of the assay in most cases.

In conclusion, sputum anti-Pa IgA antibody levels are elevated in patients with chronic Pa infection. The sensitivity of the assay is even greater in sputum than in serum raising the possibility that sputum could be material of choice for the early detection of Pa.

P1450
Tracking disease progression in cystic fibrosis using bronchiectasis, trapped air and quality of life
Leonie Tepper1,2, Elisabeth Uten3, Daan Caud1,4, Alexandra Quinter1,4, Harm Tiddens1,2. 1Pediatric Pulmonology, Erasmus MC/Sophia Children’s Hospital, Rotterdam, Netherlands; 2Radiology, Erasmus MC/Sophia Children’s Hospital, Rotterdam, Netherlands; 3Child and Adolescent Psychiatry, Erasmus MC/Sophia Children’s Hospital, Rotterdam, Netherlands; 4Psychology and Pediatrics, University of Miami, FL, United States

Background: Progression of cystic fibrosis (CF) is characterized by bronchiectasis (BE) and trapped air (TA) on CT. We hypothesise that progression of BE, and TA results in a lower Health Related Quality of Life (HRQoL), assessed by the Cystic Fibrosis Questionnaire-Revised (CFQR).

Objective: To evaluate associations between changes in BE, TA, and CFQR-R over time.

Methods: Cohort study (July 2007-January 2012). Clinical stable CF patients, with two routine bi-annual chest CTs, and CFQ-Rs. CT scans were anonymous and randomly selected, using CF-CT BE and TA scores. Scores are expressed as % of maximum score. CFQ-R was completed by children (aged 6-13 years) and adolescents (aged ≥ 14 years). Score-range 0-100, higher scores indicate better HRQoL. For changes in CF-CT BE, TA score, CFQ-R respiratory-symptoms domain scores, their correlations, and to test the hypothesis we used Student’s paired t-test, Spearman’s correlation coefficient, and linear regression model, adjusted for age and gender.

Results: CF patients (n=40): mean age T1 11.9 years, T2 13.8 years. In two years there was a significant increase in CF-CT BE scores (p=0.03) and CF-CT TA scores (p=0.03), but not in CFQ-R scores. At T1 CF-CT BE scores (p<0.01, r=0.49) and CF-CT TA score (p=0.04, r=0.34) correlate with CFQ-R scores. At T1 similar correlations were found: CF-CT BE (p<0.01, r=0.41), CF-CT TA (p=0.02, r=0.37). Change in CF-CT BE and TA scores did not correlate to change in CFQ-R scores.

Conclusion: BE and TA correlates to HRQoL. Modest progression of BE and TA did not result in impairment of HRQoL.

Supported by an unconditional grant by Gilead Sciences, Inc and the Sophia fund: “steun door Zeevaart.”

P1451
Lung clearance index (LCI) and hyperinflation in children with cystic fibrosis (CF)
Near AL-Khathlan1,2, Erol Gaillard3, Caroline Beardmore1. 1Infection, Immunity and Inflammation, Leicester University, Leicester, United Kingdom; 2Respiratory Care, Dammam University, Dammam, Saudi Arabia

Introduction: LCI is used to detect early CF lung disease.1,2,3 However, there are few data relating changes in LCI to lung volumes, and extent of hyperinflation, in children with CF.4 Therefore, we aimed to look at the association between LCI derived from multiple-breath nitrogen washout (MBNW) and two indices of hyperinflation (i) residual volume/total lung capacity (RV/TLC), and (ii) the difference between FRC determined by plethysmography (FRCp) and MBNW (FRCMBNW).

Methods: Children with CF completed MBNW and plethysmography as part of their annual review. All tests were performed, analysed and reported according to ATS/ERS recommendations. The difference between FRCp and FRCMBNW was expressed as a % of FRCp and called FRCdiv. Results were examined using Spearman’s rank correlation coefficient.

Results: 37 children with CF (aged 5-17) completed lung function tests. A significant correlation was found between LCI and RV/TLC (r=-0.516, p=0.001) (Figure), and between LCI and FRCdiv (r=0.431, p=0.011).

P1452
Discussion: The adoption of LCI as an ideal marker for early lung disease requires that it should correspond to established markers of abnormalities in lung function.6,7 Our findings showed comparable decline in LCI and indices of hyperinflation in children with CF.

P1452
Short term effects of chest physiotherapy in children with cystic fibrosis assessed by a new lung function test
Chiara Abbas, Floriano Singer, Carmen Casaulta, Philipp Latzin. Pediatrics, University Hospital, Bern, Switzerland

Background: No lung function test exists that is able to assess short-term effects of physiotherapeutic treatment (PT) in children with Cystic Fibrosis (CF). We recently developed a tidal single-breathe washout (SBW) using two tracer gases to measure ventilation inhomogeneity (VI).

Aims: We assessed whether this new SBW test is able to measure short-term effects of PT and inhalation.

Methods: Children with CF (n=25) between 6 and 16 years performed lung function assessments prior to and after inhalation and PT. Assessments consisted of a double tracer gas SBW (DTG-SBW) and spirometry. DTG contained sulfur hexafluoride (SF6) and helium (He), and was inhaled during tidal breathing. A side-stream ultrasonic flowmeter measured molar mass. DTG-SBW outcome was percentage of expired volume where expired molar mass equals inspired molar mass, reflecting inspired ratio of SF6 and He (IPDTG).

Results: After intervention IPDTG decreased from 66.5% (±25.8) to 59.7% (±25.4) resulting in a mean difference of -7.3% (95%CI -12.9 to -1.8) and MEF25.75 increased from 1.41 L/s to 1.62 L/s resulting in a mean difference of 0.19 L/s (95%CI 0.02 to 0.37). In a post-hoc subgroup analysis we found that the DTG-SBW is more suited to detect changes in VI in patients with mild CF lung disease (n=14, FEV1 z-score >-2), whereas spirometry indexes increased only in patients with moderate CF lung disease (n=11, FEV1 z-score <-2).

Conclusion: The DTG-SBW seems to be a promising test to detect short-term effects of physiotherapy and inhalation.

P1453
Periperal airway function and severity of CF lung disease – A cross-sectional study from childhood to late middle age
Fatma Al Jassim1, Anders Lindblad2, Per Gustafsson1. 1Pediatric Pulmonology, Allergy and Allergy, Q204, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden; 2Pediatrics, Central Hospital Skövde, Skövde, Sweden; 3CF Centre, Queen Silvia Children’s Hospital, Gothenburg, Sweden

Background: Ventilation inhomogeneity (VI) measured by multiple-breathe washout (MBW) is a characteristic feature of cystic fibrosis (CF) and correlates more closely than spirometry with HRCT structural lung damage (Thorax 2008;63:129). MBW provides both global indices of VI such as the lung clearance index (LCI) and specific indices of VI arising in the conductive (Scond) and the acinar (Sacin) domain. We have recently shown that serial measurements of Scond and Sacin reflect overall lung disease severity over a wide age range.

Methods: The LCI, Scond and Sacin were measured by SF6 MBW in 71 CF subjects aged 7.1-55.4 yrs (median 17.4) with FEV1 % pred (median 86). Data are given as z-scores (Respiration 2009;78:339).

Results: FEV1 was abnormal (z-score < -1.96) in 27 (38%), LCI in 57 (80%), Scond in 67 (94%) and Sacin in 40 (56%) of subjects. Correlations between indices are given in Table 1. MBW indices were more sensitive to airway pathology than spirometry. Scond was the most sensitive index but did not correlate with disease severity. LCI reflected spirometric disease severity better than Sacin or Scond and was more sensitive than Sacin.

Conclusion: These cross-sectional findings suggest that LCI is more useful than Scond or Sacin in monitoring CF lung disease. Scond may, however, be used as an early marker of lung involvement.

P1454
Prolonged oxygen kinetics during submaximal cardiopulmonary exercise testing (CPET) in adult patients with cystic fibrosis (CF) and their relationship with indices of oxidative capacity
Eleni Armeniakou, 1, Giannis Paterakis1, 2, Nikolaos Parikos1, 2, Eleni Angeliki1, Seraphis Khalkia1, 2, Dominikos Natsis1, 2, Eleni Kolovou1, 2, 1Cystic Fibrosis Unit, 10th Pulmonary Department, Athens University of Medicine, Athens, Greece

Background: Patients with cystic fibrosis demonstrate reduced exercise capacity. As the submaximal exercise testing overcomes many of the limitations of maximal exercise testing, indices of submaximal exercise capacity like time constant (τex) are of increased investigational interest.

Aims: To compare oxygen kinetics of submaximal exercise testing between patients with cystic fibrosis and healthy controls and explore their relationship with indices of oxidative capacity.

Patients and Methods: 14 adult patients with CF (8 males/6 females, mean age 22±10 years) and 10 healthy controls (5 males/5 females, mean age 29±7 years) submitted to maximal and submaximal CPET. We have calculated: τex during submaximal CPET, peak oxygen consumption (VO2peak) during maximal CPET, anerobic threshold (AT) as a percentage of VO2peak and the slope of recovery after maximal CPET as it is expressed by the ratio of oxygen consumption to time (VO2/t slope).

Results: The main finding is that τex in control group is significantly lower (29.55±6.38 s) than τex in CF group (42.55±21.55 s, p<0.05). Moreover, a statistically significant negative correlation is found between τex and indices of oxidative capacity of maximal CPET such as: VO2peak (r=-0.533, p=0.049), AT % (r=-0.645, p<0.01) and VO2/t slope (r=-0.576, p=0.031).

Conclusion: Oxygen kinetics of submaximal CPET in adult patients with cystic fibrosis are prolonged and they are correlated with indices of oxidative capacity during maximal CPET.

P1455
Habitual physical activity in cystic fibrosis
Daniela Savi1, Mattia Internullo2, Giuseppe Cimini1, Elena Angelici2, Serena Quattrucci1, Patrizia Troiani1, Salvatore Cucchiara1, Paolo Palange1.

Introduction: Habitual physical activity has important clinical implications in Cystic Fibrosis (CF) and has therapeutic effects on sputum clearance, respiratory muscle strength and quality of life. While recent studies have shown that aerobic fitness is related to survival, that physically active CF patients have higher peak oxygen uptake (VO2peak) and lower rate of decline of FEV1, less is known about the relationship between physical activity levels and patient’s functional status, including exercise tolerance.

Methods: Eleven stable CF patients (mean (SD) age 32 (9) yrs; FEV1 2.7 (0.8) l; IC 3.8 (0.9)) were recruited at rest, during symptom-limited incremental exercise test (CPET) and during 6MWT. We assessed daily physical activity using both SW (SenseWear, SW) that subjects wore for 4 consecutive days from waking until going to bed including weekends, and the Habitual Activity Estimation Scale Questionnaire (HAESQ).

Results: There was no difference between the weekdays and weekends recordings in any activity variable. We found no agreement in physical activity measured by SW vs HAESQ. By contrast, we found a close relationship between SW step count and FEV1 (r²=0.9, p<0.02) and SW energy expenditure vs VO2peak (r²=0.8, p<0.05) at CPET. Distance at 6MWT was not correlated to any physical activity variables, either at SW or HAESQ.

Conclusions: Adults CF patients have similar habitual physical activity levels at weekdays and weekends. Activity levels measured by the subjective methods and by the objective monitoring, i.e., SW vs HAESQ, seems to provide different information on the level of daily physical activity. Physical activity is related to degree of airflow obstruction and to the maximum exercise capacity.

P1456
Acute exercise in cystic fibrosis patients increases neutrophilic pulmonary inflammation
Michael Laskine1, Stanislaw Ptaszyński2, Claude Pouirer2, Alphonse Jeannevet-Grosjean1, Anna Landry1, Guylaune Lebouf2, Celine Bergeron1, 1Internal Medicine, University Hospital, Montreal, QC, Canada; 2Pneumology, University Hospital, Montreal, QC, Canada

Background: Neutrophilic inflammation mainly from recurrent bacterial infection characterizes cystic fibrosis (CF) Airways. Repeated inflammatory insults may lead to progressive lung function decline. Acute exercise is reported to trigger a systemic inflammatory response, but inflammation pattern has been poorly studied.

As exercise is part of a healthy lifestyle, we aim to depict the modulation of inflammation after an acute exercise in CF.

Methods: 12 subjects with mild to moderate stable CF (FEV1>50% of p.v.) underwent a constant load exercise test at 80% of their maximal load. Spatum and blood were sampled before and 1 hour after exercise and analysed for differential leukocyte counts.

Results: 6 females and 6 males completed the study with a mean FEV1 of 72.8±12.6% and a mean exercise time of 4.6 minutes. No desaturation was reported. Table 1 summarizes the differential leukocytes counts in blood and spatum. Exercise increases A 2.2 fold increase in airway neutrophils (p=0.019) and 1.4 fold increase in blood neutrophils (p=0.013).

Conclusion: We demonstrate that acute exercise increases the peripheral and airway neutrophilic inflammation in CF.
way inflammation in stable CF subjects. This burst of neutrophils might have a dual role in which it might improve local defense against infections and participate in airway destruction through release of elastase and other mediators. The modulation of this inflammatory response by exercise training has to be explored.

P1457
Heart rate variability response to submaximal exercise in children with cystic fibrosis
Vanessa Resquesti, Rêncio Florêncio, Silvia Brilhante, Illia Lima, Fernando Lavezzo, Guilherme Fregonezi. Physical Therapy Department, Federal University of Rio Grande do Norte, Natal, RN, Brazil

Background: Rehabilitation or physical activity can improve chronic respiratory disease as a Cystic Fibrosis. Nevertheless, because autonomic dysfunction is common in CF, heart control may be affected in response to exercise.

Objective: To assess the cardiac autonomic control using heart rate variability (HRV) analysis before and after a six-minute walking test (6MWT).

Methods: We studied lung function at baseline and HRV before and after 6MWT in children’s with CF and matched healthy control group.

Results: Thirteen children in the CF group (6 male) mean age: 12±2.7 years, with obstructive disease (FEV1/FVC: 0.83±0.11, FEV1: 71.4±21%pred) and 12 healthy children (6 male), mean age 11.4±2.4 years, with normal lung function (FEV1/FVC: 0.93±0.12, FEV1: 91.6±17.4%pred) were evaluated. Baseline HRV was different between CF and CG in LFnu: 53.18±15.01 vs. 32.79±7.91, p = 0.0003; HF%: 25.45±18.43 vs. 53±9.56, p = 0.0018; HFnu: 47.32±14.68 vs. 68.34±8.67, p=0.0039; and LF/HF: 1.25±0.72 vs. 0.49±0.18, p < 0.0066. After the 6MWT was observed significant differences between groups for LF/m/s2: 846.69±754.81 vs. 345.58±197.18, p=0.027; LF%: 35.44±8.06 vs. 25.88±6.20, p=0.0024; LFnu: 60.13±6.33, p=0.0003; HF%: 40.45±15.8 vs. 65.59±8.18, p=0.0003; and LF/HF: 1.9±1.7 vs. 0.53±0.21, p<0.0001.

Conclusion: Children with CF had higher sympathetic drive at baseline and after a submaximal exercise test compared to the CG, suggesting a sympathetic-vagal dysfunction.