Impulse oscillometry (IOS) cannot detect vocal cord dysfunction (VCD) in asthma

Laurence Ruane1, Kathy Low1, Kenneth Lau2, Peter Holmes1, Paul Finlay1, Phillip Bardin1, 3, 4, Paul Guy1, 3. 1Dept Respiratory & Sleep Medicine, MMC, Clayton, VIC, Australia; 2Diagnostic Imaging, MMC, Clayton, VIC, Australia; 3Monash Institute of Medical Research, MMC, Clayton, VIC, Australia; 4Monash University, Monash University, Clayton, VIC, Australia

Vocal cord dysfunction (VCD) complicates asthma and can be detected using
320-slice CT larynx (Low et al, Am J Respir Crit Care Med, 2011). However, this involves radiation and impulse oscillography (IOS) may be a safe, convenient and non-invasive method to diagnose the condition. We assessed whether IOS may be able to identify VCD originally diagnosed by CT larynx.

Methods: 42 patients with asthma, matched for age, body-mass index (BMI) and baseline pulmonary function parameters were studied. 21 had evidence of VCD detected by 320-slice CT larynx. All had spirometry and IOS immediately following CT and relevant parameters were compared between patients with and without VCD.

Results: The groups were well matched but none of the IOS measurements differed between the groups. Mean values were virtually identical for all parameters and post-bronchodilator values were also similar.

Discussion: In spite evidence that IOS may differentiate upper and lower airway obstruction, this study shows conclusively that the non-invasive IOS technique cannot identify upper airway narrowing associated with VCD in asthma.

P1144

Relationship between FVC and respiratory muscle strength in patients with amyotrophic Lateral sclerosis (ALS)

Guilherme Fregonezi1, Palomma Russelly Saldanha Araujo1, Tatiana Lindemberg Ferreira Macêdo1, Mario Emílio2, Selma Bruno1, Vanessa Resgueir1, Armelle de Fátima Dornelas de Andrade1,2,3 Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil; 2Neurovascular Disease Outpatients Clinics, Hospital Universitário Onofre Lopes - Federal University of Rio Grande do Norte, Natal, RN, Brazil; 3Physical Therapy, Federal University of Pernambuco, Recife, PE, Brazil

Aim: The aim of this study was to analyze the relationship between Forced Vital Capacity (FVC) and respiratory muscle strength in Amyotrophic Lateral Sclerosis (ALS) patients and healthy subjects.

Methods: We study 31 ALS patients and 28 healthy subjects by spirometry and respiratory muscle strength assessment (Plmax, Plmax and SNP). Patients were classified in relation to FVC in two grades FVC > 75%pred. or FVC < 75%pred. Cut off points for respiratory muscle weakness were used for men and women: FVC > 56.1 cmH2O/33.4 cmH2O and Plmax > 70.6 cmH2O/57.2 cmH2O and SNP 61.1 cmH2O/57.2 cmH2O respectively.

Results: Twenty-eight ALS patients (16 males), 54.12 year old and 28 healthy subjects were included in the study. We found in cross tab analysis between FVC-Plmax, FVC-Plmax and FVC-SNP a sensibility and specificity of 75%/58%, 81%/67% and 75%/67% respectively. We found a positive correlation between FVC/Plmax (r=0.724), FVC/Plmax (r=0.826) and FVC/Plmax (r=0.748) in ALS patients (p<0.001). The relationship between Plmax/Plmax in healthy subjects and ALS were Plmax/Plmax=16.6+1.1*Plmax (r=0.828). A positive correlation was found between Plmax and SNP in ALS patients (r=0.802) and health subjects (r=0.872). Furthermore, in ALS patients FVC correlated with SNP (r=0.748), Plmax (r=0.724) and Plmax (r=0.826).

Conclusion: In patients with ALS the combination between FVC and respiratory muscle strength can increase early detection of respiratory muscle weakness.

P1145

Conditioning of whole body plethysmographs (WBPs) for prolonged measurements during exercise

Barbara Uva, Dario Bovio, Andrea Aliverti. Dipartimento di Biotecnologia, Politecnico di Milano, Milano, Italy

Due to the significant thermal drift determined by variations of temperature (ΔT) and humidity (ΔRH) in the box, in clinical practice WBPs are usually kept under constant exercise (EX) and of recovery (REC).

In all subjects, ΔT and ΔRH were similar during QB, EX and REC. T increased linearly during QB and EX with different slopes and then plateaued during REC. Conversely, RH did not vary during QB and changed nonlinearly during EX and REC. α, ΔT averaged 0.3±0.2, 1.0±0.3 and 0.3±0.0°C and ΔRH 1.7±1.1, 28.1±7.2 and 24.7±7.9%, respectively with A, B and C conditioning. During EX, ΔT was 0.8±0.2, 1.0±0.3 and 0.7±0.3°C and ΔRH 17.1±2.0, 28.1±7.2 and 24.7±7.9%, respectively with A, B and C conditioning. A and C were significantly more effective than B in controlling ΔT during both QB and EX (p<0.001). A was more effective than B and C in controlling ΔRH during both QB and EX (p<0.001).

In conclusion, combining a cooling device with air recirculation allows to keep T constant inside the WB. During prolonged measurements, even during EX. None of the 3 considered conditioning systems allows to control RH, and the repeatability of RH variations suggests that thermal drift can be corrected by dedicated software.

P1146

Intra-individual variability of some respiratory variables during exercise and its effect on anthropometric measurements

Mikhail Chushkin1, Palomma Russelly Saldanha Araujo1, Tatiana Lindemberg Ferreira Macêdo1, Mario Emílio2, Selma Bruno1, Vanessa Resgueir1, Armelle de Fátima Dornelas de Andrade1,2,3 Physical Therapy, Federal University of Rio Grande do Norte, Natal, RN, Brazil; 2Neurovascular Disease Outpatients Clinics, Hospital Universitário Onofre Lopes - Federal University of Rio Grande do Norte, Natal, RN, Brazil; 3Physical Therapy, Federal University of Pernambuco, Recife, PE, Brazil

Aim: The aim of this study was to analyze the relationship between Forced Vital Capacity (FVC) and respiratory muscle strength in Amyotrophic Lateral Sclerosis (ALS) patients and healthy subjects.

Methods: We study 31 ALS patients and 28 healthy subjects by spirometry and respiratory muscle strength assessment (Plmax, Plmax and SNP). Patients were classified in relation to FVC in two grades FVC > 75%pred. or FVC < 75%pred. Cut off points for respiratory muscle weakness were used for men and women: FVC > 56.1 cmH2O/33.4 cmH2O and Plmax > 70.6 cmH2O/57.2 cmH2O and SNP 61.1 cmH2O/57.2 cmH2O respectively.

Results: Twenty-eight ALS patients (16 males), 54.12 year old and 28 healthy subjects were included in the study. We found in cross tab analysis between FVC-Plmax, FVC-Plmax and FVC-SNP a sensibility and specificity of 75%/58%, 81%/67% and 75%/67% respectively. We found a positive correlation between FVC/Plmax (r=0.724), FVC/Plmax (r=0.826) and FVC/Plmax (r=0.748) in ALS patients (p<0.001). The relationship between Plmax/Plmax in healthy subjects and ALS were Plmax/Plmax=16.6+1.1*Plmax (r=0.828). A positive correlation was found between Plmax and SNP in ALS patients (r=0.802) and health subjects (r=0.872). Furthermore, in ALS patients FVC correlated with SNP (r=0.748), Plmax (r=0.724) and Plmax (r=0.826).

Conclusion: In patients with ALS the combination between FVC and respiratory muscle strength can increase early detection of respiratory muscle weakness.

P1147

Thematic Poster Session

Abstract printing supported by Chiesi. Visit Chiesi at Stand B2.10

SUNDAY, SEPTEMBER 2ND 2012

Abstract printing supported by Chiesi. Visit Chiesi at Stand B2.10

Discussion: In spite evidence that IOS may differentiate upper and lower airway obstruction, this study shows conclusively that the non-invasive IOS technique cannot identify upper airway narrowing associated with VCD in asthma.

Methods: Seventy patients were included in the study. All the patients performed 6MWT. Pulmonary function was studied at St. George’s Respiratory Questionnaire (SGRQ) and UCD Shortness of Breath Questionnaire (SObQ).

Conclusion: In patients with pulmonary diseases, the information about exercise capacity and quality of life (QoL) in these patients.

Subjects: 352 patient’s data collected. 5 classified with mixed lung disease excluded from analysis due to small sample size. Of the remaining 347 patients; 38 (10.9%) identified as restrictive, 158 (43.5%) obstructive and 151 (43.5%) normal as per ATS/ERS interpretation guidelines.

Results: Significant correlations exist between lung function and walk distance. Regression equations generated for restrictive (r=0.500 p<0.001), obstructive (r=0.500 p<0.001) and normal (r=0.500 p<0.001) subjects. Validation analysis demonstrated more accurate disease specific walk distance prediction (Bland-Altman) than Enright (1998) predicted equations.

Conclusion: The regression equations demonstrated better predictive capability when compared to Enright equations, thus supporting the requirement for disease specific regression equations.
PI1148
Alterations in respiratory mechanics and pulmonary ventilation induced by
Chlamydia psittaci
Carola Ostermann, Petra Reinhold, Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, Jena, Germany

Chlamydia psittaci (Cp) is capable of inducing acute pulmonary zoonotic disease (psittacosis) or persistent infection occurring in patients with pulmonary emphysema and/or COPD. To elucidate the pathogenesis of this infection, a defined reservoir model in calves was recently introduced\(^1\), which resembles the situation in humans more closely than mice. This investigation was undertaken to identify pulmonary dysfunctions induced by *Cp*.

Eighteen calves were inoculated with *Cp*, whereas another 18 control calves received uninfected cell culture. Respiratory disorders were characterized non-invasively applying pulmonary function tests from human medicine (i.e. impulse oscillometry and capnography) to spontaneously breathing animals from 7 days before the challenge until 14 days post inoculation.

Compared to control calves, calves exposed to *Cp* had significantly increased respiratory resistance at low frequencies (< 5 Hz), while respiratory reactance at all frequencies (3 – 15 Hz) decreased significantly, indicating that both obstructive and restrictive pulmonary disorders were induced by the pathogen. In spontaneous breathing, expiration was more impaired than inspiration. Alveolar hypocapnia was confirmed by decreased tidal volume, increased dead space ventilation, increased FRC, and decreased end-tidal CO₂.

In conclusion, this bovine model has been found to be suitable for studying functional host-pathogen interactions in the mammalian lung. Pulmonary dysfunctions assessed in this model provide relevant insights into the pathophysiology of acute respiratory illness induced by *Cp*.

PI1149
Respiratory muscle strength after inhaled short-acting beta-agonist administration in stable COPD patients
Alina Crostescu, Diana Ionita, Irina Pele, Daniela Jipa, Miron Bogdan. Pulmonary Rehabilitation Center, National Institute of Pneumology, Bucharest, Romania

Background: Complex mechanisms are involved in dyspnoea and exercise intolerance in COPD patients, one of these being the increased mechanical work of respiratory muscles.

Aim: To evaluate the increase in respiratory muscle strength after administration of salbutamol in COPD patients.

Subjects and methods: Stable COPD patients performed respiratory muscle strength measurements (maximal inspiratory pressure MIP, maximal expiratory pressure MEP) and body-plethysmography (residual volume RV, functional residual capacity FRC). MIP and MEP were again measured 30 minutes after 400 micrograms of inhaled salbutamol was administered.

Results: Twenty stable COPD patients were evaluated: stage II-IV GOLD, mean age 58.5 (±9) years, 17 males, mean FEV1 1.29 L (42.6% of predicted). Mean respiratory muscle strength values were: MIP 73.8 (±22) cm H2O and MEP 132.2 (±35) cm H2O. Thoracic hyperinflation was present in all cases: mean RV 231.8% and mean FRC 168.9% of predicted.

A slight increase in respiratory muscle strength was seen after salbutamol administration, without reaching statistical significance: mean MIP value increased to 76.4 cm H2O (by 2.6 cm H2O, p<0.05), mean MEP value increased to 133.15 (by 0.9 cm H2O, p>0.05).

Conclusion: Administration of 400 micrograms of inhaled salbutamol in our stable COPD patients did not significantly improve respiratory muscle strength.

Further studies are needed on a larger population of COPD patients with different disease phenotypes.

PI1150
EMG-pattern of respiratory muscles during Muller manoeuvre: Effect of body posture
Marina Segurzbaeva. Laboratory of Respiratory Physiology, Pavlov Institute of Physiology, St. Petersburg, Russian Federation

The voluntary maximal inspiratory effort is the manoeuvre requiring activation, recruitment and coordination of different respiratory muscles. A study was undertaken to describe the pattern of recruitment of inspiratory muscles used in the generation of maximal inspiratory effort in different body postures. 10 young normal human participants in this study. Maximal inspiratory mouth pressure (MIP) during Muller manoeuvre was measured in the standing, sitting, right side lying (RSL), left side lying (LSL), supine and head-down-tilt (HDT - 30°) posture.

The level of electrical activity of the diaphragm (D), parasternal (PS), sternocleidomastoid (SM) and genioglossus (GG) was studied during Muller manoeuvre in each of body postures. MIP in the standing position was 105.3±12.0 in men and 59.9±10.1 cm H2O in women (control). Both in men and women MIP did not significantly differ from control in the sitting, supine, RSL and LSL. But MIP in HDT was lower by 23% and 27% compared with control in men and women respectively. Integrated EMG activity of D during Muller manoeuvre was near the control in sitting, supine, RSL and LSL and significantly greater in HDT compared with standing. On the contrary, the PS and SM showed the highest level of activation during Muller manoeuvre in standing position, but its activation was significantly lower in HDT (P<0.05). EMG of GG was significantly greater in supine position and HDT while its activation was lower in sitting, LRS and LLS.

We conclude that maximal inspiratory effort reflects a complex interaction between several muscle groups and changing in body posture from standing to HDT might influence the activation of different muscles resulted in lower MIPs in HDT.

P1151
Maximal respiratory pressure and maximal voluntary ventilation in Brazilian health population: A multicentre study
Guilherme Freconegre, Palomona Russell Araujo, Vanessa Resqueti, Esther Silva, Marlene Moreno, Jael Nascimento Junior, Larissa Carvalho, Ana Gabriela Cavalcanti, Armele de Fátima Domelas de Andrade, Physiological Therapy Department, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Physical Therapy Department, Methodist University of Piracicaba, Piracicaba, SP, Brazil; Physical Therapy Department, Federal University of Pernambuco, Recife, PE, Brazil

Maximal respiratory pressures (MRP) and maximal voluntary ventilation (MVV) are worldwide measures used to assess respiratory muscle strength and endurance. Although there are references values established to Brazilian population different methodological procedure used in previous studies could contribute to wide variation in values published. This study was conducted in three centers in Brazil, Natal-RN, Recife-PE and Piracicaba-SP. Subject was evaluated in relation to anthropometrics parameters, physical activity profile, maximal inspiratory/expiratory pressure and MVV. Correlation and multiple linear regressions were used to predict male and female MRP and MVV equations. We studied 244 subjects (114 males/30 females) distributed in different age group from 20 to 80 years old. The results showed a significantly positive correlation between MIP/MEP and height in female; negative correlation with age in both genders. A positive correlation between MVV, weight and height in male were found; in female, we found a positive correlation with height and negative correlation with age. In the multiple linear regression analysis only age continued to have an independent predictive role for dependent variables in MIP/MEP and MVV.

The results of this study provide a reliable reference equations of MRP and MVV for health Brazilian population from 20 to 80 years old.

P1152
Clinical impact of the relationship between low bone mineral density and peripheral muscle strength in patients with COPD
Glen Leemans, Kris M. H. Ides, Lieve De Backer, Hilde Varembeng, Kevin De Soomer, Dirk Vissers, Wilfried De Backer, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk; Respiratory Medicine, University Hospital Antwerp, Edegem, Department of Health Sciences, Artesis University College Antwerp, Merksem, Antwerp, Belgium

Introduction: COPD is a respiratory disease with systemic consequences such as osteoporosis. It is known that this impaired bone mineral density (BMD) correlates

Background:

Subjects and methods:

Eighteen calves were inoculated with *Chlamydia psittaci*.

Results: Twenty stable COPD patients were evaluated: stage II-IV GOLD, mean age 58.5 (±9) years, 17 males, mean FEV1 1.29 L (42.6% of predicted). Mean respiratory muscle strength values were: MIP 73.8 (±22) cm H2O and MEP 132.2 (±35) cm H2O. Thoracic hyperinflation was present in all cases: mean RV 231.8% and mean FRC 168.9% of predicted.

A slight increase in respiratory muscle strength was seen after salbutamol administration, without reaching statistical significance: mean MIP value increased to 76.4 cm H2O (by 2.6 cm H2O, p<0.05), mean MEP value increased to 133.15 (by 0.9 cm H2O, p>0.05).

Conclusion: Administration of 400 micrograms of inhaled salbutamol in our stable COPD patients did not significantly improve respiratory muscle strength.

Further studies are needed on a larger population of COPD patients with different disease phenotypes.

References:

Abstract printing supported by Chiesi Visit Chiesi at Stand B2.10
with physical inactivity. If physical inactivity does depend on muscle strength, a correlation between muscle strength and osteoporosis must exist.

Objective: To evaluate how strong peripheral muscle strength is related to the loss of BMD in our COPD population.

Methods: Data of 11 patients in a pulmonary rehabilitation program is analysed. BMD at the lumbar spine is obtained by dual-energy X-ray absorptiometry (DXA). DXA is performed based upon the patient's risk profile (long history of corticosteroids). The BMD is expressed as a T score. Isometric quadriceps force (IQF) is assessed by a computerized dynamometer during a voluntary maximal isometric contraction with the hip at 90° and the knee at 60° flexion. The highest value is taken.

Results: A significant correlation is found between T score lumbar spine and IQF in % predicted of the normal value (R=0.627; p<0.039). IQF is not related to the T score of the hip (p=0.385).

Conclusions: Lower BMD in the lumbar spine seems to relate with lower IQF in our COPD population. Strengthening of those quadriceps muscles in this specific COPD patients must therefore be done in an upright, weight-bearing position during closed chain exercises to stabilise or increase the BMD of the lumbar spine.

P1153

The effect of lung hyperinflation on respiratory muscle strength in COPD patients

Kevin De Soomer, Hilde Varenberg, Rutje Claus, Wilfried De Backer, Ellie Oostveen. Department of Pulmonary Medicine, Antwerp University Hospital, Antwerp, Belgium

Introduction: Many COPD patients exhibit hyperinflation, due to premature closure of the airways and loss of lung elastic recoil, which impairs the respiratory muscle function.

Aim: To assess the relationship between the degree of lung hyperinflation and respiratory muscle strength.

Methods: 46 consecutive male COPD patients referred to the hospital’s pulmonary rehabilitation program underwent lung function testing and assessment of respiratory muscle strength at baseline.

Results: We observed a significant negative relationship between MIP and MEP vs the degree of hyperinflation.

Conclusions: Anesthesia induced changes of respiratory mechanics in rats measured by impulse oscillometry

Carmen Claudia Klein1, Jens Thomas2, Norbert Mieskes3, Martin Hoffmann3, Hans-Juergen Smith3.

1Veterinary Clinic, fzmB GmbH, Research Centre of Medical Development and Biotechnology, Bad Langensalza, Germany; 2Medical Development, fzmB GmbH, Research Centre of Medical Development and Biotechnology, Bad Langensalza, Germany; 3Medical Development, Research in Respiratory Diagnostics, Berlin, Germany

Aim: Because anesthesia is often required in respiratory research of rodent species, whose influence on respiratory mechanics should be investigated utilizing the non invasive Impulse Oscillometry (IOS) test.

Material and methods: Ketamine/midetomidine combination (study a), followed by urethane two weeks later (study b), were applied for anesthesia of ten female rats. IOS measurements were taken before and 30 minutes after drug application in each study.

Results: Breathing frequency and tidal volume decreased significantly due to anesthesia in both studies. Results of spectral resistance (R) and reactance (X), all in kPa L^-1 s^-1, as well as level of significance are presented in table 1.

Table 1. Medians (lower, upper quartiles) of R and X before and after medication of ketanam/ midetomidine (study a) and urethane (study b)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Study a</th>
<th>Study b</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5</td>
<td>5.6 (2.6; 6.3)</td>
<td>6.6 (6.1; 7.0)*</td>
</tr>
<tr>
<td>R10</td>
<td>7.2 (6.1; 7.7)</td>
<td>5.8 (5.4; 6.0)**</td>
</tr>
<tr>
<td>X10</td>
<td>-1.9 (-3.1; -2.5)</td>
<td>-3.0 (-3.7; -2.6)</td>
</tr>
<tr>
<td>X15</td>
<td>-3.7 (-4.3; -3.0)</td>
<td>-3.9 (-4.6; -3.7)</td>
</tr>
<tr>
<td>X20</td>
<td>4.5 (-5.0; 6.0)**</td>
<td>4.9 (-4.7; 5.0)**</td>
</tr>
</tbody>
</table>

Conclusions: Anesthesia in rats leads to changes of their breathing pattern and various impedance parameters as well. These investigations are only possible using a non-invasive and non-cooperative technique like the IOS.

The authors appreciate the financial support of the German Federal Ministry of Economics (Berlin Germany, registration number IW 707139).

P1155

Detection of bronchial asthma using impulse oscillation system (IOS) in patients with normal spirometry

Roberto Lapis, Anna Chiara Ogliari, Alice Biffi, Alessandra Cimino, George Cremona, Servizio di Pneumologia e Fisiopatologia Respiratoria, Istituto Scientifico San Raffaele, Milano, Italy

Background: The gold standard for the diagnosis of bronchial asthma in patients with a normal spirometry is currently the bronchial provocation test. IOS is a promising technique to assess airway function being simple to perform and able to quantify changes in peripheral airway resistance undetected by traditional spirometry.

Aim & methods: In order to assess whether IOS could be useful in detecting asthma in subjects with a normal spirometry, 23 (9 female, mean age 37 ± 13 years) non-smoking patients referred for methacholine challenge testing (MCT) for chronic rhinitis or cough were studied by spirometry and IOS prior to MCT. All tests were performed on the same day in separate study rooms by different technicians blind to the results.

Results: Mean baseline FEV1 was 87.8 ± 0.05 cmH2O/l/s; p<0.05) and higher baseline Peripheral Airway Resistance (Rp) (2,61 ± 0.71 vs 1,43 ± 0.85 cmH2O/l/s; p<0.05). The was a strong negative correlation between baseline Rp and PD20 (r=-0.77, p<0.009). The area under the Receiver Operative Curve (ROC) showed a accuracy of 0.78 (C.I.=0.66-0.88) using a cut-off value of 3.01 cm H2O/l/s.

Conclusion: We conclude that Rp may be a useful marker in predicting MCT response and provide a screening tool for detecting bronchial asthma.
PI156
An influence of low frequency noise on lung function
Larisa Kryzheva1, Dmitry Gusarov2, Alexey Seleznov2, Laboratory of Functional Investigations, Research Institute of Phthisiopulmonology, Saint-Petersburg, Russian Federation; 2Center of Medical and Biological Problems, Research Institute of War Medicine, Saint-Petersburg, Russian Federation

Introduction: The natural irritants of lung mecanoreceptors are the differences of acoustic pressure. One of the main influences of noise, there are waves of compression and vacuum parenchyma, deformation of alveolus walls, bronchial tubes and blood vessels. Low-frequency noise, practically without distortions getting into a chest cavity, affects lungs already at small intensity. Low-frequency acoustic fluctuations in lungs lead to plethora in lung capillaries, a hypostasis of interalveolar partitions, focal haemorrhage.

Aim: To investigate an influence of low frequency noise on pulmonary function.

Materials and methods: 25 patients were examined (28 artillerymen (all men, mean age 40.8±8.2 yr, work duration 10.1±3.6 yr) and 12 from them in 3 years later. All of them were exposed low frequency acoustic influence (acoustic impulses duration 200-400 msec with peak pressure 140-150 dB at 5 Hz). We performed spirometry, body plethysmography, investigation of lung elasticity and diffusion capacity for CO (DLCO).

Results: 54% of artillerymen from this group had decrease of residual volume (RV), 11% of them had decrease of total lung capacity (TLC) and 7% had decrease of vital capacity, 36% had decrease of lung compliance. 18% of artillerymen had decrease DLCO and 36% of them had decrease of ratio D/LCO/VA. In 3 years we observed progress in decreasing of TLC, RV, intrathoracic gas volume, DLCO and D/LCO/VA.

Conclusion: We concluded low frequency noise had conducting decreasing of static lung volumes and diffusion capacity.

PI157
A comparison of two analysers measuring exhaled nitric oxide concentration
Waldemar Tomalak1, Jakub Radlinski, Dept. Physiopathology of Respiratory System, Institute for TBC & Lung Dis. Rabka Branch, Rabka, Poland

The measurements of the concentration of nitric oxide in exhaled air (FeNO) has been introduced in 90’s of XXth century. FeNO appeared to be a useful marker of inflammation activity and is used as a tool in controlling asthma and its treatment.

The aim of the work was to compare two analysers measuring FeNO: Sievers 280i (Sievers, USA) and HypAir (Medisoft, B). The Sievers analyser works on-line and uses ozone transducer to measure FeNO. Hypair analysers uses the same off-line technique and uses electrochemical transducer. In 76 patients (12±6±0 yrs) we have made measurements using both analysers in random order according to ERS/ATS recommendations. The subjects exhaled air through flow rate of 100±30 mL/s with peak pressure 140-150 dB at 5 Hz. We performed Bland-Altman analysis showed, that correlation between difference and the mean was strongly related to each other with r=0.971 and FeNO(HypAir) - FeNO(Sievers).

Results: We calculated R_{mean} by a classical model (parallel connected bronchi (PM)) and compared it with R_{mean} obtained by a dichotomous model (DM). In the latter, R_{mean} was calculated consecutively by branches of merging in 23 generations. We simulated an obstruction of 50% of the bronchus to 0.5 (half) of their radius.

Conclusion: In case of normal structure (all bronchi of each generation have ideal radius) provided both models identical R_{mean}.

Further analysis showed that PM is not sensitive for the spatial distribution of obstruction bronchi. It operates only with their number in each generation regardless whether the obstruction occurs in the same or in different segments. DM is sensible to the heterogeneity of obstruction. The simulations of random distributed obstruction showed that DM leads to a 2.16 fold higher R_{mean} compared to PM. Primarily vertical bronchial heterogeneity plays an essential role. By simulation of different patterns of topographical heterogeneous obstruction, estimated R_{mean} is in DM on the average 4.31 fold higher than in PM.

Conclusion: The classical model of parallel connected bronchi of each generation disregards the topology of obstruction that leads to falsely decreased R_{mean} estimation. Spatial heterogeneity of the obstruction is an important factor of R_{mean} increase.

PI160
Processing optimization of exhaled breath condensate previous to the analysis by mass spectrometry
Laura Nimer-Nayevis, Luis Marinaz-Pardo, Beatriz Lema-Costa, Silvia Flores-Calle, Helen Castellanos Martinez, Respiratory Research Unit, CHU A Coruna. Biomedical Research Institute of A Coruna(INIBIC), A Coruna, Spain

The Exhaled Breath Condensate (EBC) is a representative and non-invasive lung sample so the determination of its proteome might be useful to find disease-specific biomarkers. Most of the works published up to the date about this issue describe several problems to identify proteins in EBC proteome.

Aims: To evaluate three methods of EBC concentration as a pre-processing step for the use of mass spectrometry protein identification. To optimize the storage conditions for the EBC.

Methods: EBC samples were collected with the EcoScreen Device (Viasys GmbH, Germany) and stored at -80°C. Protein quantification was performed by BCA methodology. Sample concentration was performed by protein precipitation with Amicon Ultra-2 filters (Millipore) or Reverse phase chromatography with POROS R2 resin. Proteins were identified by mass spectrometry.

Results: After processing, there were no differences between liofilization and filtration which yielded an insufficient concentration for mass spectrometry (6.3+8.2597 µg/mL±standard deviation). Protein purification with BCA method followed by tryptic digestion gave place to the identification of 13 proteins. Long term storage of EBC affected dramatically the protein stability.

Discussion: Protein concentration by reverse phase chromatography is necessary to determine the EBC proteome by mass spectrometry. EBC samples should be analyzed within one year period to avoid protein degradation. This optimization is crucial to determine the protein profile in EBC samples from different respiratory pathologies.

PI161
Clinical usefulness of the measurement of percutaneous partial pressure of carbon dioxide in respiratory patients
Takashi Taniaka1, Toshiaki Homma1, Keisuke Aita1, Hiroyuki Fukazawa1, Masaki Hagaya2, Kennosuke Kadono2, Respiratory Medicine, Teikyo University Chiba Medical Center, Ichihara City, Chiba Prefecture, Japan; 2Respiratory Medicine, Moriya Sleep Clinic, Moriya City, Ibaraki Prefecture, Japan

Background: Arterial oxygen (PaO2) and carbon dioxide gas partial pressure (PaCO2) conditions due to many cases of respiratory diseases are very important to the respiratory patients. But in practice, usually on admission of the patients,
many clinicians tend to omit blood gas analysis, because this is an invasive, painful, expensive examination and not essential for the adaptation of medical insurance on the treatment of respiratory patients. So, we used a percutaneous carbon dioxide partial pressure (PtcCO2) analysis meter (TOSCA™) and measured PtcCO2 of respiratory patients and compared these results with the conventional blood gas meter.

Objectives: Forty of our respiratory patients who admitted to our clinic because of symptoms. Ten chronic obstructive pulmonary disease, ten pneumonia, ten interstitial pneumonia, ten lung cancer patients were enrolled. We gave them the informed consents and measured PtcCO2 and PaCO2.

Methods: The ear probe of TOSCA™ was put on the patient’s ear pad. Five minutes after, we checked their respirations and if they were stabilized, PtcCO2 measurements have started. The PtcCO2, percutaneous O2 saturation (SpO2) and pulse rate on the display were checked and recorded. Then we measured PaCO2.

Results: The correlation between all PtcCO2 and PaCO2 was R²=0.97. If we mentioned full and detail, chronic obstructive pulmonary disease (R²=0.97), pneumonia (R²=0.99), interstitial pneumonia (R²=0.95), lung cancer (R²=0.80) and all data had significant correlations.

Conclusion: The measurement of PtcCO2 by the TOSCA™ is non-invasive and provides very useful informations on the patient’s respiratory conditions before the treatment of diseases.