90. Airway smooth muscle cells and fibroblasts: cell biology

P742

TGFβ1-induced extracellular matrix production enhances airway smooth muscle cell proliferation

T.A. Oenema1, L. Smedinga1, G. Mensink1, A.J. Halayko2, J. Zaatuma1, H. Meurs1, R. Gosens1, B.G.J. Dekkers1.

1Molecular Pharmacology, University of Groningen, Groningen, Netherlands; 2Physiology and Internal Medicine, University of Manitoba, Winnipeg, Canada

The fibrogenic cytokine transforming growth factor-β1 (TGFβ1) is an important mediator in airway remodelling. TGFβ1 overexpression in mice induces airway smooth muscle (ASM) hyperplasia, one of the characteristics of airway remodelling in asthma. The mechanisms underlying this response are unclear. As studies of ASM cell proliferation showed that TGFβ1 alone has very weak mitogenic properties, combined effects with other factors such as Gq- or Gi-protein coupled receptor agonists may be involved. Here, we hypothesized that the mitogenic effects of TGFβ1 on ASM are indirect and require prolonged exposure to allow deposition of extracellular matrix (ECM) proteins. To address this hypothesis, we investigated the effects of acute and prolonged treatment with TGFβ1 (2 ng/mL), alone and in combination with the muscarinic receptor agonist methacholine (MCh, 10μM) on human ASM cell (hASMc) proliferation. TGFβ1 had no acute effect on hASMc
P743
Omalizumab inhibits IgE-induced extracellular matrix deposition by asthmatic airway smooth muscle cells
Michael Roth, Michael Tamm. Pneumology, University Hospital Basel, Basel, Switzerland

Increased serum IgE levels in allergic asthma contribute to inflammation. Neutrophilic inflammation in the presence and absence of Omalizumab on extracellular matrix deposition by human airway smooth muscle cells (8 asthma patients; 8 healthy controls). Confluent cells were stimulated by 5% human pooled serum or IgE (0.1 – 10 ng/ml) in the presence or absence of Omalizumab (1 – 100 ng/ml) for 72 hours in the presence of [3H]-proline (0.5 μCi/ml) and extracellular matrix deposition was monitored. Compared to non-stimulated cells, stimulation with 5% serum increased matrix deposition by +42% and IgE dose-dependently increased matrix deposition by max. +38%. Interestingly, we observed the stimulatory effect of IgE in airway smooth muscle cells of both healthy controls and asthma patients with no significant difference. When the cells were pre-incubated with Omalizumab for 30 minutes the IgE-induced matrix deposition was dose-dependently reduced. The reductive effect was 100% when ratio of Omalizumab/IgE was 10:1. Furthermore, the inhibitory effect of Omalizumab was similar when applied together with IgE or even when added 15 minutes after IgE. When added at later time points after IgE addition the inhibitory effect of Omalizumab was reduced but significant until 45 minutes. We observed no difference of either IgE induced matrix deposition or the inhibitory effect of Omalizumab comparing healthy control to asthma patient’s cells. Our results indicate that IgE increases airway remodeling and that Omalizumab significantly reduces this effect.

P744
Neo-vascularisation in asthma: Altered angiogenic potential of ASM cells from asthmatic patients
Laura Keglowich, Michael Roth, Michael Tamm, Peter Borger. Pulmonary CT Research & Pneumology, University Hospital, Basel, Switzerland

Background: Airway remodeling is a key pathology in asthma with increasing changes of the airway wall structure, including thickening of airway smooth muscle (ASM) bundles and increased vascularisation. ASM cells require oxygen and nutrition which are delivered via blood vessels. Understanding the mechanism of neo-vascularisation and the necessary changes of the airway structure may therefore lead to novel strategies to counteract remodeling.

Methods: The capacity of ASM cells of asthmatics and non-asthmatics to induce sprouting was determined with a spraying assay, the release of VEGFA was measured and proliferation of HMEC-1 cells stimulated with conditioned medium (CM) of asthmatic or non-asthmatic donors was analyzed.

Results: CM of ASM cells from asthmatics showed an increased angiogenic potential in the angiogenesis spraying assay. HMEC-1 spheroids incubated with CM of cell-lines obtained from asthmatic patients developed more and longer sprouts compared to control CM. Proliferation of HMEC-1 cells stimulated with CM from ASM cells of asthmatics was increased and thus confirmed the spraying assay results. Next, we analyzed VEGFA levels in CM of ASM cells from asthmatic and non-asthmatic donors. Cells from asthmatics released more VEGFA compared to controls.

Conclusion: Our results indicate that the angiogenic potential of ASM cells from asthmatic patients is higher compared to that of control cells and thus may directly contribute to neo-vascularisation through the increased release of VEGFA. Counteracting this process may lead to novel asthma therapies.

Supported by SNF grant (320030_124905/1)

P745
Carrier-mediated transport of tiotropium in bronchial smooth muscle cells: The role of pH-dependent organic cation transporters
Gabor Horvath1,2, Gyorgy Losonczy1, Eliana Mendes1, Nathalie Schmid1, Andreas Schmid1, Gregory Conner1, Nevis Fregien1, Matthias Salathe1, Adam Wanner1. 1Division of Pulmonology, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, United States; 2Department of Pulmonology, Semmelweis University School of Medicine, Budapest, Hungary

Organic cation transporters (OCTs) play an important role in drug absorption, tissue distribution and elimination. Cationic drug transport mechanisms in the airway tissue, however, are poorly understood. To assess the role of OCTs in airway drug transport, uptake of the inhaled bronchodilator tiotropium (a cationic, quaternary ammonium compound) by human bronchial smooth muscle cells was measured. Primary bronchial smooth muscle cells showed a carrier-mediated, concentration-, time-, and temperature-dependent uptake of titrated tiotropium. Tiotropium uptake was reduced by various OCT inhibitors, including L-carnitine, the pH-dependent organic cation/carnitine transporter 2 (OCTN2)-carried zwitterion. OCTN2 expression was confirmed by RT-PCR and immunofluorescence analysis. Selective suppression of OCTN2 expression using lentivirus-mediated production of shRNA reduced tiotropium uptake in smooth muscle cells. Although bronchial smooth muscle cells also express corticosteroid-sensitive OCTs, tiotropium uptake was insensitive to corticosteroids in these cells. In contrast, tiotropium uptake was pH-dependent, with nearly 50% lower rates at acidic (pH 5.7) than at alkaline (pH 8.2) extracellular pH. These findings demonstrate the existence and functional role of a pH-dependent uptake machinery for tiotropium in human bronchial smooth muscle cells. We suggest that inflammation-associated airway acidification, through OCTN2 inhibition, could interfere with the disposal of tiotropium by smooth muscle in the airway and increase its concentration at muscarinic receptor sites.

P746
Role of endosomal and cytosolic pattern recognition receptors in dsRNA-induced cytokine expression in human airway smooth muscle cells
Jenny Calvé1, Yuliana Yudina1, Leif Bjerner2, Lena Uller1. 1Department of Experimental Medical Science, Lund University, Lund, Sweden; 2Department of Clinical Sciences, Lund University Hospital, Lund, Sweden

Background: Rhinovirus infections are major triggers of asthma exacerbations. Double-stranded RNA (dsRNA), a viral replication intermediate, is sensed by pattern recognition receptors (PRRs): endosomal TLR3 and cytosolic RIG-I-like receptors (RLRs). dsRNA induces cytokine expression in airway smooth muscle cells (ASMCs) via TLR3, but little is known about involvement of RLRs. Objectives: Here we studied the role of TLR3 and RLRs in dsRNA-induced cytokine expression in ASMCs.

Methods: Cultured primary human ASMCs (n=8) were stimulated with dsRNA (10 μg/ml) or dsRNA in complex with LyoVec (dsRNA/LV; 0.5 μg/ml) that selectively distributes to the cytosol and activates RLRs. mRNA expression (3 and 24h) and protein production (24h) were analyzed by RT-qPCR and ELISA respectively.

Results: At 3h, dsRNA induced significantly higher mRNA expression of IL-8, TNFα and IFNγ (p<0.001) than dsRNA/LV (p<0.05). By 24h, TNFα and IFNγ expression returned towards baseline in dsRNA-treated cells while IL-8 further increased, as did all cytokines in dsRNA/LV-treated cells, particularly IFNγ (p<0.01). Chloroquine, an endosomal TLR3 inhibitor, reduced only dsRNA-induced effects. dsRNA produced more IL-8, but equal IFNγ protein compared to dsRNA/LV. dsRNA and dsRNA/LV also upregulated RLR (RIG-I and MDA5) mRNA expression at 24h (p<0.01).

Conclusions: TLR3 largely mediated the prompt cytokine response to dsRNA in ASMCs. RLRs also played a role, especially in 24h antiviral IFNγ production. Upregulation of RIG-I and MDA5 further increased cytokine expression in dsRNA/LV-treated cells, particularly IFNγ (p<0.01). Chloroquine, an endosomal TLR3 inhibitor, reduced only dsRNA-induced effects. dsRNA produced more IL-8, but equal IFNγ protein compared to dsRNA/LV. dsRNA and dsRNA/LV also upregulated RLR (RIG-I and MDA5) mRNA expression at 24h (p<0.01).
P748
Airway smooth muscle cells from patients with COPD exhibit a higher degree of cellular proliferation and steroid insensitivity than from healthy patients
Mark Perry, Jose Baker, Kian Fan Chung, National Heart & Lung Institute, Imperial College London, London, United Kingdom

Rationale: Chronic obstructive pulmonary disease (COPD) refers to chronic bronchitis and emphysema, a pair of two commonly co-existing diseases of the lungs in which the airways become narrowed. The potential contribution of airway smooth muscle to airflow obstruction, airway inflammation and airway remodeling in COPD isn’t fully understood. Indeed, although it is known that the cytokine TGF-β expresses the expression of such cytokines as IL-6 and IL-8, little is known regarding its role upon ASM proliferation and steroid insensitivity in COPD. Ergo, we have examined the role of both the growth factor FCS and TGF-β, upon ASM proliferation and steroid response following treatment with dexamethasone.

Methods: Human ASM cells were pre-treated with dexamethasone for 2 h before being stimulated with FCS ± TGF-β for 8 days. For the determination of chemokine release, supernatants were removed and IL-6 levels determined by Duoset ELISA (R&D Systems). The degree of cell proliferation was assessed by Cell Proliferation ELISA, BrdU kit (Roche Applied Science) according to the manufacturer’s instructions.

Results: Exposure to FCS and TGF-β induced a higher increase in cellular proliferation and IL-6 release in ASM from patients with COPD compared to healthy individuals. Furthermore, the inhibitory effect of dexamethasone in this system was almost completely ablated in the ASM cells from the COPD patients.

P749
miR-221 and miR-222 target p21 and p27 in airway smooth muscle to elicit hyper proliferation in severe asthmatics
Mark Perry, Jose Baker, Kian Fan Chung, National Heart & Lung Institute, Imperial College London, London, United Kingdom

Rationale: Since microRNAs (miRNAs) were first discovered to be produced in human tissues over 10 years ago, they have emerged as important mediators in cellular physiology and pathology. Asthma is characterised by chronic airflow obstruction, chronic airway inflammation and remodeling and the airway smooth muscle (ASM) cells cultured from the biopsies of patients with asthma are of a higher degree of steroid and growth factor resistance. Indeed, recent studies have found that miRNAs, and their signalling role in ASM cells is highly relevant to the problems of asthma.

Methods: Human ASM cells were stimulated with FCS ± TGF-β for 8 days. For the determination of chemokine release, supernatants were removed and IL-6 levels determined by Duoset ELISA (R&D Systems). The degree of cell proliferation was assessed by Cell Proliferation ELISA, BrdU kit (Roche Applied Science) according to the manufacturer’s instructions. miRNA and mRNA expression was examined by TaqMan RT-PCR. The function of miR-221 and the chemokine IL-6. This ASM proliferation has been shown to be increased in response to growth factors such as FCS, and inflammatory mediators such as TGF-β. Ergo, we have examined the role of the miRNAs, miR-221 and miR-222, in both FCS and TGF-β-induced ASM proliferation and IL-6 release.

Results: Exposure to FCS and TGF-β induced an increase in cellular proliferation, IL-6 release and chemokine IL-6 expression in ASM cells of asthmatics compared to those from normal people. Moreover, the inhibitory effect of dexamethasone in this system was almost completely ablated in the ASM cells from the COPD patients.

Conclusions: miR-221 and miR-222 target p21 and p27 in ASM cells from asthmatics to elicit hyper proliferation.

P750
Sphingosine-1-phosphate receptor expression and signalling in human airway smooth muscle cells
Elizabeth Stauffer, Holly Foster, Katharina Mahn, Christopher Corrigan, Tak Lee, Grzegorz Wozczyk, MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, London, United Kingdom

Sphingosine-1-phosphate (SIP), a bioactive lipid and ligand for five G protein coupled receptors (SIP1-SIP5), is a key regulator of cell trafficking, cell differentiation and immune responses. Recently, increased concentrations of SIP have been detected in airways of asthmatic subjects and SIP has been shown to be a potent constrictor of human airway smooth muscle (HASM) cells. The aim of this study was to investigate the expression and signalling pathways of SIP receptors in HASM cells. HASMs have been grown from bronchial biopsies of healthy individuals. Real-time PCR has been used to determine gene expression. Intracellular signalling in response to SIP was measured using MAP kinase phosphorylation, intracellular calcium and cAMP assays. Three of the five known receptors are expressed in HASM cells at mRNA level: SIP1, SIP2, and SIP3. SIP1 potently activated intracellular calcium flux in a concentration-dependent manner, with EC50=4.1×10^-6M. Using a range of selective agonists and antagonists, SIP1 and SIP3 were found to couple to Gi and inhibit forskolin induced cAMP generation, whereas SIP1 and SIP3 signalled through intracellular calcium mobilisation. SIP also induced phosphorylation of extracellular signal-regulated kinase (Erk) and increased expression of several genes, including interleukin-6. This study demonstrates that SIP1 receptors may signal effectively through multiple intracellular pathways in response to SIP and activate HASM cells.

P751
Heme-oxidase (HO-1) induces CXCL10 secretion by airway smooth muscle cells
Petra Seidel1,2, Katrijn Hootsmen1, Margaret Hughes2, Michael Tamm1, Michael Roth1. 1Pulmonary Cell Research & Pneumology, University Hospital Basel, Basel, Switzerland; 2Respiratory Research Group, University of Sydney, Sydney, NSW, Australia

Background and purpose: CXCL10 induces mast cell migration towards airway smooth muscle bundles in asthmia. In blood mononuclear cells, induction of heme-oxygenase (HO-1) inhibited pro-inflammatory cytokine secretion. Dimethyl-fumarate (DMF), which is clinically used as an anti-inflammatory medication, induced HO-1 and thereby inhibited proliferation in airway smooth muscle cells (ASMC).

Experimental approach: Here we assessed the anti-inflammatory effect of DMF on TNF-α induced CXCL10 secretion in human primary ASMC and the involvement of HO-1 and mitogen activated protein kinases (MAPK). ASMC were pre-incubated with DMF and/or glutathione ethyl ester (GSH-OEt), SB203580, or the HO-1 inducers hemin, or cobalt-protoporphyrin (CoPPT) 1 hour before stimulation with TNF-α (10 ng/ml).

Key results: TNF-α induced the secretion of CXCL10, which was inhibited by DMF as well as by the HO-1 inducers hemin, or CoPPT. Interestingly, DMF amplified the TNF-α induced phosphorylation of p38 MAPK and thereby induced the expression of HO-1. Inhibition of p38 MAPK by SB203580 and HO-1 inducer hemin reduced DMF-induced HO-1. Importantly, GSH-OEt supplementation (i) abrogated the inhibitory effect of DMF on TNF-α induced CXCL10 secretion, (ii) counteracted DMF-induced HO-1 expression, and (iii) p38 MAPK inactivation.

Conclusion and implications: Our data indicate that DMF inhibits TNF-α induced CXCL10 by altering intracellular GSH, leading to activation of p38 MAPK and subsequent synthesis of HO-1 in ASMC. Thus, DMF might help to reduce airway inflammation in asthma.

P752
Corticosteroid insensitivity and enhanced mitogen-activated protein kinase activity in airway smooth muscle cells of severe asthma
Po-ju Chang, Charalambos Michaeloudes, Pankaj Bhavsar, Kian Fan Chung.

Background: Patients with severe asthma are less sensitive to oral or inhaled corticosteroids. Relative corticosteroid insensitivity has been shown in peripheral blood mononuclear cells and alveolar macrophages in these patients.

Aims and objectives: Determine the response of corticosteroids in airway smooth muscle cells (ASMCs) of severe asthma, in terms of suppression of cytokine-induced chemokine release and mRNA expression, and investigate the underlying mechanisms.

Methods: ASMCs of non-asthmatics (NA; 12), patients with non-severe (NSA; 10) or severe asthma (SA; 10) were pretreated with dexamethasone (Dex; 10^-10^ to 10^-8^ M) followed by stimulation with TNF-α at 10 ng/ml. IL-8 and eotaxin release determined by ELISA; mRNA quantified by RT-PCR. This increase was greater in patients with severe asthma than those with non severe asthma. FCS and TGF-β induced proliferation and IL-6 release were inhibited following transfection with miRNA inhibitors and potentiated in the presence of miRNA-222 mimics, by the targeting of p21 and p27.

Results: Baseline and TNF-α induced eotaxin release and mRNA were higher in NSA, but not SA, compared to NA, while no differences were observed for IL-8. p65 recruitment to gene promoters did not differ. Dex (10^-10^ M) suppressed induced eotaxin release by 36.7% vs 16.7% (p<0.05) in NSA and SA, respectively. Dex (10^-10^ M) suppressed induced IL-8 release by 40.8% vs 25.7% (p=0.01) in NA and SA, respectively. Induced IL-8 and eotaxin mRNA was significantly inhibited by Dex (10^-10^ M) in NA and NSA (p<0.05) but not in SA. Induced phosphorylated p38 and JNK were significantly higher in SA compared to NA respectively (p<0.05).

Conclusions: Corticosteroid insensitivity exists in ASMCs of severe asthma, which may be associated with enhanced p38 and JNK activity.

P753
MAP kinases mediate FGF-induced expression and release of VEGF in human airway smooth muscle cells: The role of azithromycin
Anna Willems-Widyastuti1, Bart Vanaudenaerde1, Robin Vois1, Sijin Verleden1, Stephanie De Vleeschauer1, Annemie Vaneylen1, Willem de Boer1, Hans S. Sharma1, Geert Verleden1. 1Laboratory of community Pulmonology, Katholieke Universiteit Leuven, Leuven, Belgium; 2Department of Pulmonology, LUMC, Leiden, Netherlands; 3Department of Pathology, VU University Medical Center, Amsterdam, Netherlands

Background: Fibroblast growth factors, FGF-1, FGF-2 and vascular endothelial growth factor (VEGF) are elevated in chronic inflamed airways. Airway smooth muscle (ASM) cells are known to synthesize VEGF. We investigated the contribution of FGF-1/2 on the VEGF production in ASM cells, the involvement

Abstract printing supported by Chiesi. Visit Chiesi at Stand D.30
P754
Effects of formoterol on TGF-β1 induced factors of extracellular matrix composition
Christopher Lamberts, Leopold Steibelechner, Bernhard Burian, Petra Binder, Ventsislav Petkov, Lutz-Henning Block.

Introduction: COPD is characterised by chronic airway inflammation resulting in extensive airway remodelling. The origin of the remodelling pathology in COPD is unknown and may result from increased EMP (epithelial-mesenchymal transition). EMP is a process which is mediated by hypoxia and several growth factors, such as transforming growth factor-beta (TGF-β1). Formoterol is a long acting beta2 agonist which can exert anti-inflammatory effects by the regulation of intracellular cAMP levels. The aim of our study was to determine if formoterol can modulate downstream mediators of EMP by cAMP induction.

Methods: Human bronchial smooth muscle cell culture was performed using standard protocols. Cells were stimulated with Formoterol (10^-5 to 10^-6 M), Dideoxyadenosin (DDA, 100 μM), and/or Forskolin (10 μM). Forskolin was used as a positive control. cAMP measurement was performed by ELISA (at 1, 3 and 6 hours).CTGF, Collagen1A1 (Col1) and Collagen4 (Col4) mRNA transcription was measured by quantitative real time PCR (18S mRNA served as reference gene). All experiments were performed as triplicates.

Results: Formoterol significantly increased intracellular cAMP after 1, 3 and 6 hours compared to untreated cells, whereas the maximum effect was observed after 1 hour. The cAMP increase was effectively blocked by the addition of DDA at any time point. After 24 hours, Formoterol significantly reduced TGF-β1 stimulated ColI and CTGF but not Col4 mRNA transcription. The addition of DDA reversed this effect for ColI but not for CTGF.

Conclusion: Treatment with formoterol resulted in a decrease of TGF-β1 induced mediators of extracellular matrix composition. These new findings suggest a potential role for formoterol in EMP.

P755
LSC '11 Abstract: Potential anti-inflammatory role of the cAMP effectors Epac and PKA in COPD
Anouk Oldenburger, Sara Roscioni, Esther Jansen, Mark Menzen, Anouk Oldenburger, Sara Roscioni, Esther Jansen, Mark Menzen, Andrew Halayko, Wim Timens, Herman Mensa, Fernanda Gutierrez-Aguilar1, Norma A. Bobadilla2, Maria G. Campos3, Ricardo Lascurain3, Erasmo Martinez-Cordero4, Mayra D. Alvarez-Santos5, Patricia Ramos-Ramirez2, Blanca Bazan-Perekins2, "Airway Hyperresponsiveness in Asthma. Instituto Nacional de Enfermedades Respiratorias, Mexico, Mexico; 2 Molecular Physiology Unit, Universidad Nacional Autónoma de México, Mexico, Mexico; 3 Biochemistry Department, Universidad Nacional Autónoma de México, Mexico, Mexico; 4 Laboratory of Research in Autoimmunity, Instituto Nacional de Enfermedades Respiratorias, Mexico, Mexico; 5 Pharmacology Department, Instituto Mexicano del Seguro Social, Mexico, Mexico

Caveolin-1 (Cav-1) is an important signalling scaffolding protein involved in smooth muscle contraction; however, the role of Cav-1 in airway responsiveness has not been elucidated so far. Our aim was to determine the role of Cav-1 expression with airway hyperresponsiveness (AHR) in a guinea pig asthma model. To evaluate this relation, three inhaled antigenic challenges were applied every 10 days to antigen (ovalbumin; OVA) sensitized guinea pigs (n=9). Antigen-induced airway obstruction, AHR to histamine, and the expression of Cav-1 mRNA, determined by PCR “in situ”, was increased. This increment was confirmed by flow cytometry in AHR and by immunohistochemistry in lung tissues. Airway obstruction and AHR was correlated with the extent of Cav-1 mRNA which is mediated by cAMP. Furthermore, CSE decreased Epac1 expression, but had no effects on Epac2 and PKA expression. Importantly, we observed reduced Epac1 expression in lung and airway smooth muscle cells (ASM), was evaluated at the third OVA challenge. The control group received saline solution instead of OVA (n=6). From the first challenge on, OVA induced a transient airway obstruction and the development of AHR at the third antigenic challenge. Cav-1 mRNA levels in lung (assessed by RT-PCR) significantly decreased in our asthma model compared with the control group (P<0.01). Nevertheless, in the ASM from allergic asthma guinea pigs, the expression of Cav-1 mRNA, determined by PCR “in situ”, was increased. Our Results demonstrate that FGF-1 and FGF-2 upregulated VEGF production via ERK1/2MAPK and p38MAPK pathways. The anti-angiogenic effect of dexamethasone and azithromycin may potentially contribute to take VEGF-mediated vascular remodelling in chronic airway diseases.

P756
Caveolin-1 expression in airway smooth muscle cells is related to airway responsiveness magnitude in allergic asthma models
E. Assadpour, M.H. Boskabady, M.R. Aslani. Physiology, MUMS, Mashhad, Islamic Republic of Iran

The relaxant effects of 4 cumulative concentrations of aqueous-ethanolic extract and safranal were examined by their relaxant effects on precontracted tracheal chains of guinea pig by 10 μM methacholine (group 1) and 60 μM KCl in different conditions including: non-incubated tissues (group 2) and incubated tissues with 1 μM propranolol 1 μM chlormepiramine and 1 μM atropine (group 3), (n=6). In groups 1 and 2 all concentrations of theophylline, extract and safranal showed significant relaxant effects compared to the control (p<0.05 to p<0.001). However, in group 3 the extracts of Crocus sativus showed a weak relaxant effect (p<0.05 only for highest concentration). The effects of last concentrations of safranal in group 1, and its all concentrations in group 2 were significantly lower than that of theophylline (p<0.001). In addition to the effects of two last concentration of safranal in both groups 1 and 2 were significantly lower that of Crocus sativus extract. These results showed a potent relaxant effect of Crocus sativus on tracheal chains of guinea pigs. The results also indicated the safranal is atleast, in part, responsible for the relaxant effect of Crocus sativus.

P757
Cigarette smoke alters hyaluronic acid homeostasis in primary human lung fibroblasts
Eleni Papakonstantinou1, Ioannis Klagas2, Nicola Miglino3, George Karakulakos2, Michael Tamm2, Michael Roth2. "Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; 2 Pulmonary Cell Research and Pneumology, University Hospital Basel, Basel, Switzerland

Primary lung fibroblasts were isolated from lung tissue biopsies obtained from lung donors (controls) as well as from patients with asthma. Cells were incubated in the presence of smoke conditioned medium for 48 h. Gene expression of HA synthase 1 (HAS-1), hyaluronidase-1 (HYAL-1) and of the HA receptor CD44 and RHAMM was assessed by real time PCR. Results: Cigarette smoke significantly reduced mRNA transcription of HAS-1, HYAL-1, and HYAL-2 while induced gene expression of HYAL-1. These results indicate an elevated HA catabolism in response to cigarette smoke. Furthermore, the expression of both HA receptors CD44 and RHAMM was significantly reduced in cells treated with cigarette smoke conditioned medium. The above described effects were more prominent in cells obtained from patients with asthma as compared to healthy controls.

P758
Hyaluronic acid (HA) mediates lung tissue flexibility which is considerably reduced in asthma and COPD. The pro- or anti-inflammatory effect of HA on tissue morphology depends on the length of the HA molecules. Cigarette smoke is a major risk factor for developing COPD and is also linked to asthma severity. The aim of our study was to investigate the effect of cigarette smoke on HA homeostasis by lung fibroblasts.

Methods: Primary lung fibroblasts were isolated from lung tissue biopsies obtained from lung donors (controls) as well as from patients with asthma. Cells were incubated in the presence of smoke conditioned medium for 48 h. Gene expression of HA synthase 1 (HAS-1), hyaluronidase-1 (HYAL-1) and of the HA receptors CD44 and RHAMM was assessed by real time PCR.

Results: Cigarette smoke significantly reduced mRNA transcription of HAS-1, HYAL-1, and HYAL-2 while induced gene expression of HYAL-1. These results indicate an elevated HA catabolism in response to cigarette smoke. Furthermore, the expression of both HA receptors CD44 and RHAMM was significantly reduced in cells treated with cigarette smoke conditioned medium. The above described effects were more prominent in cells obtained from patients with asthma as compared to healthy controls.

Thematic Poster Session
Hall 2-13 - 12:50-14:40
SUNDAY, SEPTEMBER 25TH 2011

124s
Abstract printing supported by G·Chiesi. Visit Chiesi at Stand D.30
P759

Roflumilast N-oxide, a PDE4 inhibitor, curbs bleomycin-induced lung fibroblast activation in vitro

Beatrice Arezzini¹, Daniela Vecchio¹, Piero A. Martorana¹, Hermann Tenor², Concetta Gardi¹, ¹Department of Physiopathology and Experimental Medicine, University of Siena, Siena, Italy; ²Biology, Nycomed GmbH, Konstanz, Germany

Objective: Activated lung fibroblasts may foster small airway thickening in COPD. Roflumilast, an oral, selective PDE4 inhibitor approved in EU for severe COPD, mitigates bleomycin (BLM)-induced lung fibrosis in vivo. This study addressed whether roflumilast N-oxide (RNO), the active metabolite of roflumilast, modulates effects of BLM on human lung fibroblasts (HLF) in vitro. RNO was used at 2nM, corresponding to therapeutic plasma levels.

Methods: HLF pre-incubated with RNO (2nM) were exposed to BLM for 24 or 48h. Reactive oxygen species (ROS) were quantified by 2′,7′-dichlorofluorescein (DCF) accumulation from dichlorodihydrofluorescein diacetate. Total glutathione (GSH) was measured with the GSH reductase DTNB protocol. Proliferation and collagen synthesis was assessed by [3H] thymidine and [3H] proline incorporation (p<0.05 vs control, *p<0.05 vs BLM).

Results: BLM (24h) at 50 and 100μg ml⁻¹ enhanced DCF accumulation by 1.9* and 1.4*-fold of control. RNO (2nM) reduced this increment by 50% and 85%, respectively. In parallel, total GSH was reduced by BLM (100μg ml⁻¹) yet rescued by RNO (2nM) (nmol mg protein⁻¹). Control 32±1.1, BLM 26.6±1.3*, BLM+2nM RNO 30±1.7). BLM (50μg ml⁻³) increased [3H] thymidine incorporation in HLF by 1.4*-fold that was abolished by RNO (2nM). Finally, RNO (2nM) reduced [3H] proline incorporation that was increased to 179±35% of control with BLM (50μg ml⁻³) to 83±13% of control. RNO (2nM) did not affect basal ROS, total GSH, [3H] thymidine or [3H] proline incorporation.

Conclusions: BLM augmented ROS formation, reduced total GSH and increased proliferation and collagen synthesis of HLF in vitro. RNO (2nM) prevented these effects.

P760

Fibroblast cell behaviour growing into a stiffened three dimensional collagen matrix

Vanessa Vicenc¹,², Susanna Estany², Adai Colom¹, Jordi Alcaraz¹, Daniel Navajas¹, Anna Julia Sanabria⁶, Roger Llatjos⁴, Ignacio Escobar⁷, Pablo V. Romero¹,², Federic Manresa¹,², Jordi Dorca¹,², María Molina¹,², ¹Department of Pneumology, Unit of Intersitial Lung Diseases, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain; ²Pneumology Research Group, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain; ³Unit of Biophysics and Bioengineering, Universitat de Barcelona, Barcelona, Spain; ⁴Department of Pathology, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain; ⁵Department of Thoracic Surgery, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain; ⁶Department of Preventive Medicine, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain

Introduction: Idiopathic Pulmonary Fibrosis is a process that involves abnormal cell behaviour and increased tissue stiffness. The aim of this study was to elaborate a stiffened three-dimensional (3D) collagen matrix to study cultured human cells inside.

Methods: 3D matrices were elaborated with native collagen I and it was non-enzymatically glycated with ribose at different conditions. Matrix stiffness was measured with Atomic Force Microscope and collagen deposition was evaluated by confocal reflexion microscope. Primary fibroblasts were obtained from normal human lungs. Cellular viability in 3D matrices was evaluated by AlamarBlue fluorescence assay and LIVE/DEAD kit at different time points.

Results: It was observed that fluorescence AlamarBlue assay requires more time incubation to detect viability in 3D collagen matrices than in 2D cell cultures. An increased stiffness of 3D matrices was achieved with high concentration of collagen and ribose glycation from the second week. Stiff-variability and morphological changes in collagen I fibers was dependent on the media used for the matrix elaboration and the glycation condition. Cell death was detected in higher ribose concentrations. Fibroblasts showed a better-defined morphology and viability in matrices elaborated with lower ribose concentrations and DMEM media.

Conclusion: The development of this 3D collagen I matrix allows the fibroblast growth inside a modified microenvironment. Cell viability depends on different variables and it dramatically decreases with higher concentrations of ribose. This innovated model could help in the study of cell behaviour and phenotype at different conditions.

Supported by: SEPAR, SOCAP, FUCAP, PS09/01757

P761

Tiotropium reduced carbachol-induced expressions of IL-6 and IL-8 by primary human lung fibroblasts of asthma and non-asthma subjects

Luigi Costa¹, Michael Roth¹, Paola Casarosa², Michael Tamm¹, Pieter Borger³, ¹Pulmonary Cell Research, Dept of Biomedicine, University Hospital Basel, Basel, BS, Switzerland; ²Respiratory Diseases Research, Boehringer Ingelheim Pharma, Biberach, Germany

Introduction: Asthma is a reversible, obstructive airway disease of unknown etiology. Although the molecular pathology of asthma is still obscure, muscarinic receptor antagonists are currently in use to treat the disease. Human lung fibroblasts express muscarinic receptors, which may regulate and fine-tune the expression of cytokine genes. In the present study we analyzed the effect of the muscarinic receptor agonist, carbachol, on the release of IL-8 and IL-6 by primary human lung fibroblasts obtained from asthmatic and non-asthmatic subjects. Fibroblasts were grown in RPMI-1640 (+10% FCS, 1% vitamins) in the presence of increasing carbachol concentrations (10-8M to 10-6M). Carbachol dose-dependently and significantly inhibited IL-6 release in IL-1β-stimulated fibroblasts of non-asthmatics, but not in fibroblasts of asthma patients. Furthermore, Carbachol dose-dependently increased the IL-1β-induced IL-8 release, however, with no difference comparing fibroblasts obtained from asthmatics to cells of controls. The muscarinic receptor inhibitor tiotropium alone reduced the secretion of IL-6 and IL-8 by fibroblasts. Tiotropium (10-8 M) almost completely blocked the IL-1β-induced IL-6 and IL-8 secretion. Our data indicate that tiotropium reduces an inflammatory response of lung fibroblasts elicited by muscarinic receptors. These data may provide a rationale for the beneficial effects of tiotropium in the treatment of asthma.

Supported by: Boehringer-Ingelheim Pharma and the Swiss National Foundation.

Objective: In the present study we analyzed the effect of the muscarinic receptor agonist, carbachol, on the release of IL-8 and IL-6 by primary human lung fibroblasts obtained from asthmatic and non-asthmatic subjects. Fibroblasts were grown in RPMI-1640 (+10% FCS, 1% vitamins) in the presence of increasing carbachol concentrations (10-8M to 10-6M). Carbachol dose-dependently and significantly inhibited IL-6 release in IL-1β-stimulated fibroblasts of non-asthmatics, but not in fibroblasts of asthma patients. Furthermore, Carbachol dose-dependently increased the IL-1β-induced IL-8 release, however, with no difference comparing fibroblasts obtained from asthmatics to cells of controls. The muscarinic receptor inhibitor tiotropium alone reduced the secretion of IL-6 and IL-8 by fibroblasts. Tiotropium (10-8 M) almost completely blocked the IL-1β-induced IL-6 and IL-8 secretion. Our data indicate that tiotropium reduces an inflammatory response of lung fibroblasts elicited by muscarinic receptors. These data may provide a rationale for the beneficial effects of tiotropium in the treatment of asthma.

Supported by: Boehringer-Ingelheim Pharma and the Swiss National Foundation.

Methods: HLF pre-incubated with RNO (2nM) were exposed to BLM for 24 or 48h. Reactive oxygen species (ROS) were quantified by 2′,7′-dichlorofluorescein (DCF) accumulation from dichlorodihydrofluorescein diacetate. Total glutathione (GSH) was measured with the GSH reductase DTNB protocol. Proliferation and collagen synthesis was assessed by [3H] thymidine and [3H] proline incorporation (p<0.05 vs control, *p<0.05 vs BLM).

Results: BLM (24h) at 50 and 100μg ml⁻¹ enhanced DCF accumulation by 1.9* and 1.4*-fold of control. RNO (2nM) reduced this increment by 50% and 85%, respectively. In parallel, total GSH was reduced by BLM (100μg ml⁻¹) yet rescued by RNO (2nM) (nmol mg protein⁻¹). Control 32±1.1, BLM 26.6±1.3*, BLM+2nM RNO 30±1.7). BLM (50μg ml⁻³) increased [3H] thymidine incorporation in HLF by 1.4*-fold that was abolished by RNO (2nM). Finally, RNO (2nM) reduced [3H] proline incorporation that was increased to 179±35% of control with BLM (50μg ml⁻³) to 83±13% of control. RNO (2nM) did not affect basal ROS, total GSH, [3H] thymidine or [3H] proline incorporation.

Conclusions: BLM augmented ROS formation, reduced total GSH and increased proliferation and collagen synthesis of HLF in vitro. RNO (2nM) prevented these effects.