509. Clinical features of human pulmonary hypertension

Late-breaking abstract: Demographic trends and changes In long term outcome of incident idiopathic, heritable and anorexigen-associated pulmonary arterial hypertension between 2001 to 2009. Results from the Pulmonary Hypertension Registry of the United Kingdom and Ireland Yi Ling1, Martin Johnson1, David Killey2, Robin Condiffe3, Charlie Ellisk2, Simon Gibbs1, Luke Howard1, Joanna Pepke-Zaba1, Karen Shereas4, Paul Corris1, Andrew Fisher5, Jim Loxton6, Sean Gains7, Gerry Coghlan7, John Worth8, Michael Gatzoulis8, Andrew Peacock1.

Methods: Retrospective observational study of all incident cases of IPAH, heritable and anorexigen-associated PAH diagnosed in the UK and Ireland between 1 January 2001 and 31st December 2009. Results: Total of 646 patients were diagnosed (22% in 2001-2003, 33% in 2004-2006 and 45% in 2007-2009). In recent years, patients were older, had higher BMI, lower % predicted diffusion capacity for carbon monoxide (DLCO) and had more co-morbidities (COPD, ischemic heart disease and diabetes). There is no difference in unadjusted overall survival from 2001 to 2009. However, after adjusting for age, % DLCO, 6 minute walk distance and cardiac index, patients diagnosed in the 2001-2003 period were likely to have a shorter survival time compared to those diagnosed in 2007-2009 (hazard ratio 1.7, 95% CI 1.1-2.6). Conclusion: After adjusting for potential confounders, survival of patients with mean PAP >45±9 mmHg and pulmonary capillary wedge pressure (PCWP) ≤15 mmHg after dialysis in group 1 was significantly lower compared to patients in group 2 (p=0.0001). Using a PCWP threshold of 15 mmHg, all four cases of precapillary PH were unmasked by dialysis. In group 1 RHC was performed before and after dialysis. PAH was diagnosed if mean pulmonary arterial pressure (mPAP) was >25±9 mmHg and pulmonary capillary wedge pressure (PCWP) ≤15 mmHg after dialysis and if other causes of PH were excluded. In CKD patients after dialysis, prevalence of PH was 24/31 (77%; 20/31 postcapillary PH, 4/31 precapillary PH); prevalence of PAH was 3/31 (10%). After dialysis, there were significant decreases in mPAP and PCWP; all four cases of precapillary PH were unmasked by dialysis. In group 2, postcapillary PH was diagnosed in 22 cases (71%); no cases of PAH were detected. Conclusions: The finding that the prevalence of PAH was 10% in CKD patients on dialysis unexplained dyspnea suggests careful screening for PH in this patient population is warranted. The possibility that dialysis might be a trigger for the development of PH is plausible given that there were no instances of PH in the nondialysis CKD patient group. RHC should be performed after dialysis to unmask precapillary PH.

491 Pulmonary arterial hypertension in patients with chronic kidney disease on dialysis and without dialysis: Results of the PEPPER-study

Background: Pulmonary hypertension (PH) is common in patients with dialysis-dependent chronic kidney disease (CKD) and is an independent predictor of mortality. However, specific hemodynamics of the pulmonary circulation, changes induced by hemodialysis and prevalence of pulmonary arterial hypertension (PAH) have not been evaluated in patients with CKD.

Methods and results: We assessed consecutive patients with CKD on hemodialysis (group 1, n=31) or without dialysis (group 2, n=31), in World Health Organization functional class ≥3 with dyspnea unexplained by other causes, using right heart catheterization (RHC). In group 1 RHC was performed before and after dialysis. PAH was diagnosed if mean pulmonary arterial pressure (mPAP) was >25±9 mmHg and pulmonary capillary wedge pressure (PCWP) ≤15 mmHg after dialysis and if other causes of PH were excluded. In CKD patients after dialysis, prevalence of PH was 24/31 (77%; 20/31 postcapillary PH, 4/31 precapillary PH); prevalence of PAH was 3/31 (10%). After dialysis, there were significant decreases in mPAP and PCWP; all four cases of precapillary PH were unmasked by dialysis. In group 2, postcapillary PH was diagnosed in 22 cases (71%); no cases of PAH were detected. Conclusions: The finding that the prevalence of PAH was 10% in CKD patients on dialysis unexplained dyspnea suggests careful screening for PH in this patient population is warranted. The possibility that dialysis might be a trigger for the development of PH is plausible given that there were no instances of PH in the nondialysis CKD patient group. RHC should be performed after dialysis to unmask precapillary PH.

4912 Left atrial volume to distinguish idiopathic pulmonary arterial hypertension from pulmonary hypertension due to left heart disease

Introduction: It can be difficult to distinguish pulmonary arterial hypertension (which will respond to disease targeted therapy) from pulmonary hypertension due to left heart disease (PH-LHD). Current practice is to use right heart catheterisation (RHC) to distinguish between the two conditions. We explored the use of left atrial volume (LAV) obtained via cardiac magnetic resonance imaging (CMR) as an alternative to RHC.

Methods: Patients being admitted for diagnostic assessment underwent CMR and RHC. LA volume was assessed using standard 2- and 4-chamber CMR views and the biplane area-length method, and indexed to the body surface area. RHC was then performed within 72 hours. IPAH was defined as per current guidelines. Patients with mean PAP >25±9 mmHg and PAWP >15±9 mmHg at RHC were considered to have PH-LHD.

Results: Between Jan 2009 and Feb 2011, we diagnosed 31 patients with IPAH (mPAP 47±10, PAWP 7±4 mmHg) and 19 patients with PH-LHD (mPAP 43±8, PAWP 22±6 mmHg). LAW was significantly lower in IPAH compared with PH-LHD (24.9±19 ml/m² vs 66±19 ml/m², p<0.0001). Using an LAV threshold of 43 ml/m² but similar RV mass compared to patients with RV M/V<0.6. Despite no significant differences in clinical status, effort capacity and hemodynamics between the two groups, patients with RV M/V>0.6 have a lower mortality compared to patients with RV M/V<0.6.

Conclusion: In PAH it is possible to identify a subgroup of patients with RV hypertrophy and moderate diastolic volume increase (i.e. high RV mass/volume ratio) which has a low rate of deaths, suggesting a better RV adaptation to the increased afterload.
as the cutoff, we could distinguish IPAH from PH-LHD with 97% sensitivity and 100% specificity. The area under the ROC curve was 0.99.

Conclusion: Left atrial volume of 43 ml/m² recorded by CMR may be a useful mean distinguishing between IPAH and PH-LHD, avoiding the need for catheterisation.

4913
The changing picture of patients with pulmonary arterial hypertension (PAH) in France
Oliver Sibon1, Azeddine Yaici1, Laurent Rotraint1, Vincent Cottin2, Emmanuel Berger3, Grégoire Prévot4, Virginie Gressin5, Marc Humbert1, Gérard Simonneau1, 1Centre de Référence de l’Hypertension Pulmonaire Sévère, APHP, Hôpital A. Béclère, Université Paris-Sud 11, Clamart, France; 2Service de Pneumologie, CHU, Hôpital Louis Pradel, Lyon, France; 3Service de Pneumologie, CHU, Hôpital de la Côte d’Azur, Cern, France; 4Service de Pneumologie, CHU, Hôpital Larrey, Toulouse, France; 5Actelion, Pharmaceuticals, Paris, France

The PH Registry provides current demographics of patients (pts) with PAH in France. We describe clinical characteristics, haemodynamics and survival of pts newly diagnosed with PAH between Nov 06 and Oct 09.

Methods: Clinical and haemodynamic characteristics of all consecutive newly diagnosed pts (i.e. incident cases) belonging to groups 1 (PAH) and 1’ (pulmonary veno-occlusive disease (PVOD)) were collected at the time of diagnosis. Survival was analysed from PAH diagnosis to a cut-off date of 1 Nov 10.

Results: A total of 751 pts were analysed. Female sex was 35%, mean ±SD age was 56.4±15 yrs (18–86) and 24% of pts were >70 yr. Idiopathic (I), heritable (H), anorexigen (A), connective tissue disease, congenital heart disease, portal hypertension, HIV and chronic haemolytic anaemia-associated PAH accounted for 38%, 2.4%, 4.8%, 19.6%, 4.7%, 16.6%, 4.5% and 0.7% of the population, respectively. Twenty-five pts (4.7%) had 2 risk factors for PAH. PVOD was diagnosed in 4.3% of pts. At diagnosis, 74% of pts were in NYHA class III or IV. Mean 6-min walk was 335±123 m. Mean PAP, cardiac index and PVR were 47±2 mmHg, 2.6±0.9 L/min/m² and 741±413 dyn.s.cm⁻⁵, respectively. PAH-specific therapies were initiated in 620 pts (82.6%). One-, 2- and 3-year survival estimates were 88.5%, 78.2% and 69.2% in the overall population, and 88.3%, 77.3% and 67.7% in the subgroup (n=350) with IPAH, HP AH or An-PAH, respectively.

Conclusions: PAH is still diagnosed late in the course of the disease. Furthermore, pts are older and the proportion of males is higher than that observed in other registries. Finally, there is a trend for an improved survival in pts with IPAH, HPAH or An-PAH compared to our previous findings.

4914
A genome wide DNA microsatellite association study of Japanese patients with high altitude pulmonary edema
Nobumitsu Kobayashi1,2, Masao Ona1, Masayuki Hanaoka1, Yunden Droma1, Michiko Ito1, Yoshihiko Katsuyama3, Hideki Asamura2, Keishi Kubo1, Nobumitsu Kobayashi1,2, Masao Ota2, Masayuki Hanaoka1, Yunden Droma1, Michiko Ito1, Yoshihiko Katsuyama3, Hideki Asamura2, Keishi Kubo1. 1First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan; 2Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan; 3Department of Pharmacy, Shinshu University School of Medicine, Matsumoto, Nagano, Japan

Introduction: High altitude pulmonary edema (HAPE) is a non-cardiogenic pulmonary edema that develops in susceptible people as ascension quickly to high altitude. The pathogenesis remains to be conclusively elucidated and genetic polymorphisms were highly proposed to be associated with HAPE. The aim of this study is attempt to identify the locations of the candidate human genes those might associate with the HAPE susceptibility or resistance.

Methods: The case group included 53 Japanese HAPE susceptible subjects (HAPE-s) who had developed HAPE during climbing mountains higher than 2500m and the control group enrolled 67 HAPE Japanese resistant subjects (HAPE-r) who were Japanese Alpinists and did not develop HAPE during their histories. A case-control association study was performed using 400 polymorphic microsatellite markers (which define about 10 centiMorgan resolution throughout the whole genome) by PCR. The PCR-amplified products were sequenced automatically by Gene Scan software.

Results: Nine markers (D1S468, D1S2697, D1S2785, D4S405, D5S424, D6S257, D12S2638, D16S3103 and D21S263) showed statistically significant associations with the susceptibility to HAPE and three markers (D1S230, D14S283 and D12S2638) showed significant associations with the resistance to HAPE. The markers were in linkage with genes controlling pulmonary alveolar structure, chloride channel, endothelin proteins, and other factors those might play important roles in the development of HAPE.

Conclusion: This is the first genomewide association study in HAPE. It revealed several candidate genes in associations with HAPE. The development of HAPE may be determined by the interaction of multiple genes.

4915
Predicting survival in pulmonary hypertension in the United Kingdom: Comparison of prognostic equations
Wai-Ting Nicole Lee1, Yi Ling1, Karen Shears1, Joanna Pepke-Zaba2, Andrew Peacock3, Martin Johnson1. 1Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, United Kingdom; 2Pulmonary Vascular Disease Unit, Papworth Hospital, Cambridge, United Kingdom

Background: Prognostic equations in pulmonary arterial hypertension (PAH) have been developed in the United States [1,2] and France [3]. It is not known if these would perform as well in the United Kingdom (UK) as a locally derived scoring scheme.

Aims: To develop and validate a UK composite score (CS) to predict prognosis in pre-capillary pulmonary hypertension (PCPH).

Methods: The CS was derived from 209 patients with PCPH (except congenital heart disease) treated in the Scottish Pulmonary Vascular Unit (2000-09) by including independent baseline prognostic variables identified in multivariate Cox analysis. Brier scores (BS) were used to compare its performance with other equations in 121 patients with PCPH treated at Papworth Hospital, UK. Superior performance was indicated by a lower BS.

Results:
Table 1. CS

<table>
<thead>
<tr>
<th>Points</th>
<th>Age (years)</th>
<th>Gender</th>
<th>Aetiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><70</td>
<td>Female</td>
<td>IPAH</td>
</tr>
<tr>
<td>1</td>
<td>≥70</td>
<td>Male</td>
<td>PAH</td>
</tr>
<tr>
<td>0</td>
<td>≥60</td>
<td></td>
<td>Idiopathic PAH</td>
</tr>
<tr>
<td>2</td>
<td><40</td>
<td></td>
<td>Familial PAH</td>
</tr>
<tr>
<td>0</td>
<td><150</td>
<td></td>
<td>Connective tissue disease PAH</td>
</tr>
<tr>
<td>3</td>
<td>≥150</td>
<td></td>
<td>Congenital heart disease</td>
</tr>
<tr>
<td>10</td>
<td><500</td>
<td></td>
<td>Scleroderma or other WHO Group I PAH</td>
</tr>
<tr>
<td>1</td>
<td>≥500</td>
<td></td>
<td>Not scleroderma or other WHO Group I PAH</td>
</tr>
<tr>
<td>0</td>
<td><10</td>
<td></td>
<td>Scleroderma or other WHO Group II PAH</td>
</tr>
<tr>
<td>0</td>
<td>≥10</td>
<td></td>
<td>Not scleroderma or other WHO Group II PAH</td>
</tr>
<tr>
<td>1</td>
<td><3</td>
<td></td>
<td>Scleroderma or other WHO Group III PAH</td>
</tr>
<tr>
<td>1</td>
<td>≥3</td>
<td></td>
<td>Not scleroderma or other WHO Group III PAH</td>
</tr>
</tbody>
</table>

The risk of death increased with CS in the Papworth cohort (HR 1.5, p<0.0001). The CS had a significantly lower BS than REVEAL1 (0.096 vs 0.114) and French Registry3 equations (0.096 vs 0.126) at 1 year, and French Registry equation3 (0.153 vs 0.200) at 2 years.

Conclusions: The CS predicts survival and appears to be superior to other equations in an independent UK cohort.

References:

4916
Genetic counselling in pulmonary arterial hypertension: Experience from the French referral centre
Barbara Giered1, David Montani1, Azeddine Yaici1, Mélanie Eyries2, Laurent Savale1, Benjamin Strymfel1, Xavier Jais1, Florence Coulet1, Florent Soubré1, Olivier Sibon1, Gérard Simonneau1, Marc Humbert1, 1Univ Paris Sud, Service de Pneumologie et Réanimation Respiratoire, Centre de Référence de l’Hypertension Pulmonaire Sévère, INSERM U999, Hôpital Antoine Béclère, Clamart, France; 2Univ Pierre et Marie Curie-Paris 6, Laboratoire d’Oncogénétique et Angiogénétique Moléculaire, UMR S 56 INSERM, Groupe Hospitalier Pitié-Salpêtrière, Paris, France

Background: Mutations in BMPR2 gene and more rarely in ACVR1I and ENG genes are detected in patients displaying idiopathic pulmonary arterial hypertension (PAH), pulmonary veno-occlusive disease (PVOD) and in patients with a family history of PAH or PVOD.

Aims and objectives: To screen mutations in PAH-predisposing genes in patients from the French Referral Centre and to identify high-risk relatives carrying genetic mutations.

Results: Genetic counselling and testing were offered to 434 PAH patients (347 idiopathic and 87 familial) and to 66 PVOD patients (12 with a family history

896s

Abstract printing supported by Chiesi. Visit Chiesi at Stand D.30
of PVOD). Mutations in PAH predisposing genes were identified in 58 patients with idiopathic PAH (17%) (52 BMPR2 and 6 ACVRL1 mutations) and in 73 PAH patients with a family history of PAH (84%) (69 BMPR2 and 4 ACVRL1 mutations). A BMPR2 mutation was identified in 2 PVOD patients with a family history of the disease (17%) and in only 1 PVOD patient without family history (2%).

Genetic screening was offered to 167 asymptomatic relatives of BMPR2/ACVRL1 mutation carriers and a mutation was identified in 60 of them. These subjects, having a 10-20% risk of developing PAH, received clinical screening by echocardiography every 1 to 3 years and when symptoms such as exercise dyspnoea occur. We hypothesize that screening will allow early diagnosis and treatment of the disease and in turn improve patients’ survival.

Conclusion: Systematic search of a mutation in PAH predisposing genes allowed us to identify 134 patients carrying a mutation. Half of them had no family history of PAH, suggesting the importance to propose genetic analysis to PAH and PVOD patients with and without family history of the disease.