46. Skeletal muscle weakness in COPD: physical (in)activity and biological markers

Validation of the current equations to estimate peak work load based on 6-min walk distance and general demographics in COPD patients entering pulmonary rehabilitation


1 Program Development Centre, Ciro+, Horn, Netherlands; 2 Department of Medical Psychology, Radboud University Medical Centre Nijmegen, Nijmegen, Netherlands; 3 Department of Pulmonary Diseases, Radboud University Medical Centre Nijmegen, Nijmegen, Netherlands; 4 Department of Pulmonary Diseases, Radboud University Medical Centre Nijmegen, Nijmegen, Netherlands; 5 Rehabilitation Centre Breda, Revant Rehabilitation Centre Breda, Netherlands; 6 Asthma Centre Heideheuvel, Hiversum, Netherlands; 7 Director, Ciro+, Horn, Netherlands; 8 Department of Respiratory Medicine, Maastricht University.
Medical Centre, Maastricht, Netherlands; 2Sports training, Croo, Horn, Netherlands

Background: Due to limited resources it is not possible to conduct a cardiopulmonary exercise test (CPET) in all COPD patients entering pulmonary rehabilitation (PR). Therefore regression equations were developed to estimate peak work load (Wpeak) by using 6MWD in combination with gender, age, height, weight and/or fat free mass. The aim of this study was to validate these equations in a large cohort of COPD patients entering PR.

Methods: With COPD (53% men, age: 63.9 ± 9 yrs; FEV1: < 44.4 ± 18% pred), referred to 4 specialized pulmonary rehabilitation centres in the Netherlands, the estimated Wpeak using 6 different regression equations (table) was compared to actual Wpeak obtained during CPET.

Results: Patients had poor peak (60.1 ± 33 watts) and functional exercise capacity (6MWD: 399 ± 120 m). Difference between actual Wpeak and estimated Wpeak ranged between 0 to 42 Watts. Moreover, only 6 to 24% of the estimated Wpeak differed less than 5 watts (±) compared to actual Wpeak.

Table 1. Wpeak regression equations

<table>
<thead>
<tr>
<th>Authors</th>
<th>Regression equations</th>
<th>% Patients between ±5 watts</th>
<th>Actual-predicted Wpeak (watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hill 1</td>
<td>(0.1226+6MWD5) + (7.62+height) + (117.10)</td>
<td>22</td>
<td>6.8 (26.5)</td>
</tr>
<tr>
<td>Hill 2</td>
<td>17.393 + (1.442+6MWD6)</td>
<td>12</td>
<td>0.32 (37.7)</td>
</tr>
<tr>
<td>Lungx 1</td>
<td>103.217 + (30.50 +gender) + (1.161+age) + (0.006+6MWD)</td>
<td>6</td>
<td>42.1 (32.1)</td>
</tr>
<tr>
<td>Caravelli</td>
<td>-27.971 + 3.7702(6MWD+FFM)</td>
<td>24</td>
<td>18.6 (40.5)</td>
</tr>
<tr>
<td>Kozu 1</td>
<td>(0.166+6MWD) – 4.085</td>
<td>18</td>
<td>-3.1 (24.7)</td>
</tr>
<tr>
<td>Kozu 2</td>
<td>(2.316+6MWD)+ 8.820</td>
<td>13</td>
<td>-16.4 (22.5)</td>
</tr>
</tbody>
</table>

Conclusion: Current regression equations to estimate Wpeak based on 6MWD in COPD are inaccurate in COPD. So, estimated Wpeak cannot be used to target training intensity during PR in individuals with COPD.

265 Divergent effects of obesity on weight bearing versus non-weight bearing exercise testing in patients with COPD

Frits M.E. Franssen, Erica P.A. Rutten, Emil F.M. Wouters, Paula P. van Melick, Martijn A. Spruit, Program Development Center, Cco, Centre of Expertise for Chronic Organ Failure, Horneitherde, Netherlands

Introduction: Obesity is common in patients with COPD and may have impact on disease severity. However, obesity was not associated with diminished exercise capacity or greater dyspnea during non-weight bearing exercise (e.g. stationary cycling) in COPD. Aim of this study was to investigate the impact of obesity during weight bearing exercise (e.g. six-minute walk test, 6MWT) in patients with severe COPD.

Methods: Data obtained during pre-rehabilitation assessment of 44 male obese COPD patients (OB) (age 58±4y, FEV1 39±6%, BMI 23.0±1.2 kg m-2) were compared with those of 44 matched normal male weight COPD patients (NW) (age 58±5 y, FEV1 39±6%, BMI 23.0±1.2 kg m-2) who had participated in a 6MWT in patients with severe COPD.

Results: Distance of 6MWT was significantly reduced in OB (452±101 m) compared with NW (497±82 m; p<0.05), while peak cycling exercise load was comparable (OB 166±212 W, NW 85±234 W, ns). Dyspnea (5.9±2.0 vs. 4.9±2.0; p<0.05), fatigue recorded at the end of both tests.

Conclusions: In contrast to non-weight bearing exercise, obesity has a negative impact on weight bearing exercise capacity and exercise-related symptoms in male patients with severe COPD. Obese COPD patients may prefer cycling instead of treadmill walking as training modality during rehabilitation.

207 Biomarkers of systemic inflammation after two resistance training protocols in moderate clinically stable COPD

Luciana C. Fosco1, Domingo Ramos1, Flavia A. Guarnieri2, Carlos M. Pastre1, Alessandra Choque de Toledo1, Giovana N.B. Ferrari1, Rafaela Bonfim1, Acirene P. Souza1, Rubens Cecchini2, Ercy M.C. Ramos1, 1Physiotherapy, UNESP, Universidade Estadual Paulista Julio de Mesquita Filho, Presidente Prudente, Sao Paulo, Brazil; 2Pathological Science, UEJ- Universidade Estadual de Londrina, Londrina, Paraná, Brazil

Systemic inflammation is an important factor in skeletal muscle dysfunction (SMD) in chronic obstructive pulmonary disease (COPD) patients. The SMD can be reversed partially by physical training, however, the response is dependent of type, intensity and duration of exercise. This study evaluated the inflammatory response, muscle strength and fat-free mass outcomes in COPD patients comparing two protocols of resistance training. COPD (n=34) were assigned to conventional resistance training (CRT) or elastic tubing training (ETT) groups (n=17 each, FEV1=1.23±0.46% and 1.24±0.54% predicted; aged 64±9±7.62 and 65±1.1±9 years, respectively). CRT group were trained at moderate intensity (3×10 RM) and ETT group were trained at 2-7 sets of repetitions determined individually by resistance to fatigue test. TNF-α, cytokines IL-1β and IL-10 plasma by ELISA, peripheral muscle strength and fat-free mass were obtained at baseline (D0) and after the 8-weeks training intervention (D2). Cytokines also were measured acutely immediately after the first (D1) and the last training session (D3). TNF-α, IL-1β and IL-10 increased in CRT group after 8 weeks compared to baseline (p<0.001, p<0.05 and p<0.001, respectively). IL-1β and IL-10 levels also increased in response to acute exercise (D1) and IL-10 measured acutely after 8 weeks training (D4) was reduced (p<0.01, compared to D3). No changes in cytokines levels in plasma were observed in the ETT group. Muscle strength increased in both groups, but only the ETT protocol increased the fat-free mass after 8 weeks. These findings suggest that structural and functional gains were obtained from a lower systemic cost in the ETT group.

208 Early peripheral muscle structural and metabolic impairment in chronic obstructive pulmonary disease (COPD) patients cannot be considered as a consequence of sedentariness

Fares Gouzi1,2, Adjiba Abdellaou1,3, Sami Sedraoui1, Thierry Lafontaine3, Philippe DeRigal2, Dalila Laoud-Chenivesse1, Jacques Mercier1, Christian Prefaud4, Maurice Hayot1, 1INSERM U-1046, A de Villemone Hospital, University of Montpellier I, Montpellier, France; 2Pulmonary Rehabilitation Center “La Solane”, Fontalvie Group, Osséja, France; 3Pulmonary Rehabilitation Center “La Solane”, Fontalvie Group, Lodève, France

Peripheral muscle dysfunction in COPD patients has been related to a muscle/fiber atrophy and oxidative metabolism reduction, which mimicks a severe disease. Thus, we investigated the structure and mitochondrial function in skeletal muscle biopsies from patients with COPD and sedentary healthy subjects (SHS). 24 stage I-II (according to the GOLD classification) COPD patients and 21 age-matched SHS (<150mWh of moderate-vigorous PA) had accelerometry recording, quadriiceps function and muscle mass (impedanceometry) assessment. All subjects had a biopsy of the quadriiceps, allowing assessment of the respiratory parameters and mitochondrial ATP synthesis, and of the muscle morphology (immunohistochemistry). Results are presented in mean ± SD or median [inter-quartile range]. COPD patient and PA level-matched SHS (activity counts/day: 133±70 vs 135±48; p=0.9), had the same muscle mass and fiber cross-sectional areas. However, there was a reduction of the quadriiceps endurance and of the type I fiber proportion [35% (28-49) vs 41% [38-53]; p<0.05). While the maximal ADP-stimulated respiration (state 3) with pyruvate substrate was comparable in COPD and SHS, the ATP turnover (ratio between ATP synthesis and oxygen consumption) was significantly reduced in COPD (0.96±0.4 vs 2.5±0.8; p<0.001), and observed in early stages. This study showed an early impairment of the muscle oxidative metabolism (type I fibers and mitochondrial efficiency), unexplained by the PA reduction in COPD. Thus, high PA and sedentariness has led to muscle atrophy reduced in COPD patients and suggesting that the oxidative phosphorylation (OXPHOS) pathway may be a direct cause of the COPD phenotype.
Effects of a new walking aid on 6MWD in COPD patients

Anouk W. Vaes1,2, Janneke Annegarn3, Kenneth Meijer3, Martijn W. Cuijpers1, Frits M.E. Wouters3, Jozé Wiechert4, Emiel F.M. Wouters1,5, Martijn A. Spruit1.

1 Program Development Centre, Ciro+, Horn, Netherlands; 2 Physiotherapy, Ciro+, Horn, Netherlands; 3 Department of Human Movement Science, School for Nutrition, Toxicology and Metabolism of MUMC+, Maastricht, Netherlands; 4 Occupational Therapy, Ciro+, Horn, Netherlands; 5 Respiratory Medicine, MUMC+, Maastricht, Netherlands

COPD patients often experience walking as a problematic daily activity. Although a rollator can improve mobility, many patients feel ashamed to use it. Therefore, other walking aids may be worthwhile to consider. We aimed to determine whether a new walking aid (fig1a) has similar direct effects on 6MWD as a rollator (fig1b) in COPD patients.

Figure 1. A: Walking frame “City”, B: rollator.

21 COPD patients (52% men; age: 64±10yrs; FEV1: 4±15% pred) performed 2 6MWTs during pre-rehabilitation assessment (mean best 6MWD: 369±88 m). In addition, 2 extra 6MWTs were randomly performed on 2 consecutive days: 1x with rollator and 1x with walking frame. Walking pattern (n=21) was determined using an accelerometer and metabolic demands (n=10) were assessed using a mobile oxycon.

Using walking frame resulted in a higher mean 6MWD (466±189 vs. 383±85 m) and fewer steps (491±122 vs. 601±98) compared to a rollator (all p<0.05).

Oxygen uptake, ventilation, heart rate, oxygen saturation and Borg symptom scores were comparable. 19% felt ashamed using rollator compared to 10% using walking frame.

Functional exercise performance can be improved using walking aids in COPD patients. Moreover, using walking frame led to a significant improvement in 6MWD compared to using rollator, with the same metabolic demands. Therefore, the new walking aid may be a good alternative for a rollator in COPD patients.

This study was financially supported by “Stichting De Weijerhorst”.

Combining physical activity monitoring and cardiac output during exercise in COPD patients with GOLD stages II-IV

Eleni Kortianou1,2,3, Ioannis Vogiatzis1,3, Zafeiris Louvaris 1, Maroula Vasilopoulou1, Ioannis Nasis1, Vasilis Andrianopoulos1, Theodora Vasiliou-Konopoulou1, Giorgos Kaltzinas2, Manos Alchanatis3, Nikolaos G. Koulouris3.

1 Department of Physical Education and Sport Sciences, National and Kapodistrian University of Athens, Athens, Greece; 2 Department of Physiotherapy, Technological Educational Institute, Lamia, Greece; 3 1st Department of Respiratory Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece

Background: Daily physical activity recorded by activity monitors, is an important clinical outcome in COPD patients. However, it is unknown whether changes in physical activity data are related to changes in hemodynamic responses during exercise.

Aim: To investigate whether changes in estimated energy expenditure (EE) by activity monitoring are associated with changes in cardiac output (CO) during exercise.

Methods: 30 COPD patients (10 for each GOLD stage:II,III,IV) undertook a standardized treadmill test including breath-by-breath gas exchange measurements. Cardiac haemodynamics was assessed by impedance cardiography. The SenseWear armband (SW) and the Dynaport Minimod (MM) were used to estimate EE. All patients exercised at 4 different velocities increasing by 0.7-0.8 km/h every 3 min. Minimum and maximum speeds were 1.4±0.3 km/h and 3.7±0.4 km/h, respectively. Minute-by-minute data were acquired and aligned for each patient.

Results: CO was linearly increased with increasing speeds (r=0.97). Median and interquartile range of the correlation between CO and EE by SW and MM are shown below. The level of correlation between CO and EE was not different across GOLD stages and between the two activity monitors.

Conclusion: Hemodynamic variations during incremental treadmill exercise in COPD were reliably reflected by changes in EE as those were recorded by the SenseWear armband and the Dynaport Minimod. Supported by IMI-JU Proactive#115011.