45. Mechanisms and outcomes of infective exacerbations of COPD

Late-breaking abstract: Moxifloxacin (MXF) vs amoxicillin/clavulanic acid (AMC) in acute exacerbations of COPD (AECOPD): Results of a large clinical trial with a novel endpoint
Robert Wilson1, Antonio Anzueto2, Marc Miravitlles3, Pierre Arvis4, Jeff Alder5, Daniel Haverstock6, Mila Trajanovic7, Sanjay Sethi8.

1Host Defence Unit, Royal Brompton Hospital, London, United Kingdom; 2University of Texas Health Science Center at San Antonio, Pulmonary/Critical Care, San Antonio, TX, United States; 3Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain; 4Global Clinical Development, Bayer HealthCare, Loos, France; 5Global Clinical Development, Bayer HealthCare Pharmaceuticals, Montville, NJ, United States; 6Global Biostatistics, Bayer HealthCare Pharmaceuticals, Montville, NJ, United States; 7Global Clinical Development, Bayer HealthCare Pharmaceuticals, Toronto, ON, Canada; 8Division of Pulmonary, Critical Care and Sleep Medicine, University at Buffalo, Buffalo, NY, United States

Introduction: Evidence-based therapy of AECB/COPD is limited by a lack of appropriate trials. MAESTRAL compares antibiotic therapies for AECOPDs in patients with moderate-to-severe disease at risk of poor outcomes.

Method: This was a multiregional, prospective, randomised, double-blind study of patients ≥60 years, FEV1 <60% predicted, with an Anthonisen type 1 exacerbation and ≥2 exacerbations in the last year. Patients were stratified by systemic steroid use and received MXF 400 mg PO qd (5 days) or AMC 875/125 mg PO bd (7
Rhinovirus infection induces secondary bacterial infection in COPD

Patrick Mallia1, Joseph Footitt1, Rosa Sotero1,3, Annette Jepson1

Aim: To investigate the relationship between rhinovirus infection and secondary bacterial infection.

Methods: We performed experimental rhinovirus (RV) infection in COPD subjects (GOLD stage II, N=20), smokers with normal lung function (SMK, N=21) and non-smokers (NS, N=11). Sputum was collected at baseline and following inoculation. RV infection was confirmed with PCR and semi-quantitative bacterial culture performed. SLPI, elafin and neutrophil elastase (NE) were measured in sputum by ELISA.

Results: 1 subject with bacteria in baseline sputum was excluded. Following RV infection bacteria were detected in 65% of COPD, 19% of SMK and 30% of NS (P=0.0086). 92% of bacteria in the COPD group were pathogenic bacteria, compared with 50% in SMK and 33% in NS (P=0.045). Peak sputum virus load was on day 5 and peak bacterial load on day 15. Following RV infection sputum SLPI and elafin fell from baseline in the bacteria+ve subjects and increased in the bacteria-ve subjects.

Peak virus load (8.4±0.72 vs 6.5±6.06 copies/mL,P=0.049) and sputum NE on day 0 (0.65±0.14 vs 0.31±0.07 g/mL, P=0.026) were higher in subjects with bacterial infection compared to those without.

Conclusion: Secondary bacterial infection is common following rhinovirus infection in COPD and is associated with higher virus loads and NE, but lower levels of SLPI and elafin in sputum. Degradation of SLPI and elafin by NE may be a mechanism of increased susceptibility to bacterial infection.

197
Predicators of poor outcome in severe hospitalised COPD exacerbations

Zinka Matkovic, Marc Mirazivilles, Nestor Soler, Arturo Huerta, Rebeca Domingo, Albert Gabarbarus, Antoni Torres. Department of Pneumology, Clinical Institute of Thorus, IDIABAPS, Hospital Clinic Barcelona, Barcelona, Spain

Background: The aim of study was to determine predictors of poor outcome in patients hospitalised for exacerbation of chronic obstructive pulmonary disease (ECOPD).

Methods: Hospitalised patients with ECOPD were included in a prospective study and followed for 1 month. Clinical and epidemiological parameters were evaluated including COPD Severity Score (COPD-SS) and Charlson Index. Poor outcome was: death, intensive care unit (ICU) admission, need for mechanical ventilation (MV), prolonged hospital stay (>11 days) and emergency room (ER) visit/readmission during follow-up.

Results: 155 patients: mean age:70±9.5 yrs; 84% men; 76% smokers/ex-smokers; 76% GOLD stage III or IV; mean hospital stay 8.8±5.5 days. More patients (45%) had poor outcome: 4 (3%) died; 16 (10%) had ICU admission; 33 (21%) had MV, 32 (21%) had prolonged hospital stay (>11 days) and emergency room (ER) visit/readmission during follow-up. Univariate analysis identified variables associated with poor outcome: exacerbations and hospitalisation for ECOPD in the last year (p=0.033 and 0.039 respectively); lower FEV1 (p=0.004); GOLD stage III or IV; hospital stay > 11 days (p=0.0001); ER visit/readmission (p=0.0002). In multivariate analysis number of exacerbations in the previous year (1 ECOPD: p=0.012, odds ratio [OR] 4.1, 95% confidence interval [CI] 1.4 to 12.3; ≥2 ECOPD: p=0.005, OR 4.4, 95% CI 1.6 to 12.5); pH (p=0.006, OR 0.2, 95% CI 0.1 to 0.7); PaCO2 (p=0.015, OR 1.3, 95% CI 1.1 to 1.7).

Conclusion: Previous exacerbations, hypercapnia and respiratory acidosis were identified as predictors of poor outcome in patients with severe ECOPD.

198
Human respiratory epithelial cells acquire a long-lasting antiviral condition when exposed to interferon beta

Giel Gaaagetaan, Gert Grauls, Carleen Bruggeman, Frank Stassen. Medical Microbiology, Maastricht University Medical Center (MUMC), Maastricht, Netherlands

Type I interferons (IFNs) induce strong antiviral effects and are therefore attractive to prevent seasonal respiratory infections or reduce the incidence of virus-mediated exacerbation in COPD patients. Yet, clinical application of type I IFNs is hindered due to significant side effects observed during repetitive use. In this study we investigate the duration of protection, mediated by prophylactic IFNbeta, against a human rhinovirus (HRV) infection.

Human respiratory epithelial (A549) cells were exposed for 18 hours to various concentrations (3-500 IU/ml) of IFNbeta. Then, IFNbeta was either removed or maintained in the supernatant for the rest of the experiment. Next, cells were infected with HRV-IB (MOI 0.1) at t = 0, 24, 48, 72 or 168 hours after the initial exposure to IFNbeta. At 48 hours post infection, the protective effect of IFNbeta on HRV-induced cell death was determined by a colorimetric assay RT-qPCR and plaque assay were used to determine HRV infection. In the continuous presence of IFNbeta, 90-100% of A549 cells were protected against HRV-induced cell death at every time point and at all IFNbeta concentrations. This strong protective effect was confirmed by RT-qPCR and plaque assay. Alternatively, when IFNbeta was removed, cell death increased with time and in dose-dependent way. Nevertheless, at 168h post IFNbeta stimulation (500IU/ml), still 75% of all cells were viable.

These data show that IFNbeta has not only a strong, but also long-lasting protective effect against HRV-IB. This opens new opportunities for prophylactic treatment of viral respiratory infections without the risk of side effects often seen after repetitive and systemic use.
RhinoVirus infection upregulates pentraxin-3 in smokers and COPD patients

Joseph FooTT, Patrick Mallia1,2, Sotero Rosi3,4, Maria-Belen Trujillo-Torralo1, Tatiana Kebadze1, Marco Contoli3, Alberto Papi5, Om Min Koo1,2, Rosario Maselli4, Sebastian Johnston1,2.

1Respiratory Medicine, Imperial College, London, United Kingdom; 2Respiratory Medicine, Imperial College Healthcare NHS Trust, London, United Kingdom; 3Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy; 4Dipartimento di Medicina Sperimentale e Clinica- Divisione Malattie Respiratorie, Università Degli Studi “Magna Graecia”, Catanzaro, Italy

Pentraxins are a family of acute-phase reactants and pentraxin-3 (PTX3) is the prototypic long pentraxin. PTX3 has a protective role against pathogens including influenza viruses and both pro- and anti-inflammatory actions of PTX3 are described. The role of PTX3 in virus-induced COPD exacerbations is unknown.

Methods: We infected 3 groups of subjects—COPD GOLD stage II (N=20), smokers with normal lung function (SMK,N=21) and non-smokers (NS,N=11)—with rhinovirus (RV). Induced sputum was collected on 0 time points post-inoculation, cytopsins prepared and cell counts determined. PTX3 and neutrophil elastase (NE) were measured in sputum supernatants by ELISA and sputum virus load by quantitative PCR.

Results: Following RV infection PTX3 in sputum was significantly increased over baseline in the COPD group and the SMK but not the NS.

PTX3 levels were higher in the COPD group compared to the NS on days 9, 12, 15 and 21 and compared to the SMK on day 15. Peak sputum PTX3 levels correlated with peak sputum virus load (P=0.0002, r=0.51), peak total sputum inflammatory cells (P=0.0002, r=0.50) and peak sputum neutrophil elastase levels (P=0.0006, r=0.47).

Conclusions: PTX3 may be an important mediator of neutrophilic inflammation following RV infection in COPD subjects and smokers. PTX3 is likely to contribute to the inflammatory response in virus-induced COPD exacerbations and may be both a potential biomarker and therapeutic target in COPD.