409. Cell biology of lung disease

P3876
Late-breaking abstract: Repeated analysis of alpha-1-antitrypsin concentrations in sputum, lavage and serum of smokers with and without COPD

Olaf Holz 1, Stefan Roepcke 2, Gereon Lauer 1, Norbert Krug 1, Peter Ernst 2, Claudia Diefenbach 1, Gezim Lahiu 2, Jens Hohlfeld 1, 1Clinical Airway Research, Fraunhofer ITEM, Hannover, Germany, 2PK/PD Sciences/Biomarker Development, Nycomed GmbH, Konstanz, Germany

Introduction: Alpha-1-antitrypsin (A1AT)-deficiency is a hereditary disease that can lead to the development of emphysema. Serum levels of A1AT are used for diagnosis and monitoring during substitution therapy.

Aim: We have previously shown that A1AT levels differ between smokers with and without COPD (Roecke et al. ERS2010) Here we assessed the repeatability of A1AT levels in serum, induced sputum (IS) and bronchoalveolar lavage (BAL) over a period of 6 weeks and compared the concentrations between compartments.

Methods: 24 COPD patients (GOLD II) and 23 age and gender matched healthy controls were included into the study. All were current smokers (≥ ten pack-years).

Blood, BAL, and IS were collected on two occasions. A1AT was analyzed by ELISA, CRP by Luminex.

Results: The median (IQR) A1AT concentrations was 1.69 (0.53) g/L in serum, 505 (596) μg/L in BAL and 568 (475) μg/L in IS. The reproducibility between visits within each matrix was good (serum: r=0.55, p<0.001; BAL: r=0.72, p<0.001; IS: r=0.72, p<0.001). While there was a weak relationship between mean BAL and IS A1AT concentrations (r=0.36, p=0.03), no relationship was observed between serum and lung concentrations. BAL and IS A1AT levels did not correlate with neutrophils in the respective compartment or serum CRP, and only a weak correlation between serum A1AT; blood neutrophils (r=0.31, p=0.04) and CRP (r=0.32, p=0.04) was observed.

Conclusion: A1AT appears to be stable within compartments in healthy smokers and smokers with moderate COPD. The lack of relationship between lung and serum A1AT should be considered when interpreting serum A1AT for diagnostic and monitoring purposes.

P3877
Late-breaking abstract: Repeated bronchoconstriction without additional inflammation is sufficient to induce airway remodelling in asthma

Christopher Grainge, Jonathan Ward, Gemma Lahiff, Valdeep Dulay, Laurie Lau, Donna Davies, Peter Howarth. Division of Infection, Inflammation and Immunity, University of Southampton School of Medicine, Southampton, United Kingdom

Asthma is characterised clinically by intermittent bronchoconstriction and pathologically by structural airway changes termed airway remodelling. Remodelling is associated with adverse long term outcomes and has been attributed to eosinophilic inflammation. In vitro studies suggest that mechanical forces occurring during bronchoconstriction may induce remodelling independent of inflammation. This hypothesis was examined in human volunteers with asthma.

Methods: 48 asthmatics were randomised to 1 of 4 inhalation challenges involving 3 challenges at 48hr intervals: Challenge substances were; allergen (house dust mite), methacholine, saline or salbutamol followed by methacholine. Bronchoalveolar lavage (BAL) and bronchial biopsies were obtained before and 4 days after the challenges.

Results: Allergen and methacholine challenges induced similar immediate bronchoconstriction. Eosinophilic inflammation increased only in the allergen group (BAL eosinophils (p=0.01), BAL eosinophil cationic protein (p=0.002) and tissue eosinophils (p=0.05)). Markers of remodelling increased in both the allergen and methacholine groups, with no increase in saline or salbutamol/methacholine groups. Sub-basement membrane collagen thickness (p<0.01), epithelial mucus staining (p=0.003) and cell division in the epithelium (p=0.001) and the submucosa (p<0.001) all increased as did epithelial TGF-β immunoreactivity (p<0.01). There were no differences between the allergen and methacholine groups.

Conclusions: Experimentally induced bronchoconstriction without additional airway inflammation is sufficient to induce airway remodelling in asthma.

P3878
Late-breaking abstract: Role of IL-13-producing BLT1-positive CD8 T cells in asthmatic airway obstruction

Azzeddine Dakhama 1, Maureen L. Collins 1, Donald Y.M. Leung 1, Elena Goleva 1, Rafael Alam 2, E. Rand Sutherland 1, Richard J. Martin 2, Erwin W. Geldan 1, 1Pediatrics, National Jewish Health, Denver, CO, United States; 2Medicine, National Jewish Health, Denver, CO, United States

Background: Asthma is characterized by reversible airflow obstruction, persistent inflammation and airway hyperresponsiveness. Recent animal studies identified a subset of CD8 T cells expressing BLT1, the high affinity receptor for leukotriene B4. These cells accumulate in the lungs and alter airway function via interleukin-13 (IL-13) production (Nat Med 2004, 10:865-9).

Abstract printing supported by Chiesi. Visit Chiesi at Stand D.30
Aims: To determine if a similar subset of CD8 T cells are present in asthmatic human airways and if their presence is associated with evidence for asthmatic airway obstruction.

Methods: BAL cells from asthmatics (n=39) and healthy controls (n=28) were stimulated in culture and immune-stained for CD8, BLT1 and IL-13. The data were correlated to lung function, serum IgE and airway basement membrane (BM) thickness.

Results: Compared to controls, asthmatics showed higher proportion of CD8-positive lymphocytes in BAL fluid (p < 0.001). A significant proportion of these CD8 BLT1+ cells expressed BLT1 in both groups. Unexpectedly, the proportion of BLT1-positive CD8 T cells expressing IL-13 was significantly higher in asthmatic airways compared to controls (p < 0.001). Furthermore, the proportion of IL-13-producing BLT1+CD8 T cells negatively correlated with FEV1 (% predicted) values and FEF25-75% values (p < 0.001). Interestingly, a positive correlation was detected between the proportion of these cells and serum IgE levels as well as with BM thickness (p < 0.01).

Conclusions: BLT1+CD8-positive CD T cells are present in the airways of asthmatics, and their accumulation correlates with airway obstruction, serum IgE levels and BM thickness, suggesting a pathogenic role for these cells in human asthma.

Conclusion: Both species contain atropine sensitive cholinergic and capsaicin sensitive eNANC nerves. In addition, GPC PCLS were sensitive to TRP channel inhibitors allowing the study of their contribution in the pathogenesis of lung diseases. In conclusion, GPC PCLS represent a useful model to study pharmacological aspects of lung innervation and resemble the human distal lung innervation.

P3881

The clinical significance of markers of endothelial dysfunction (ED) in the progression of idiopathic pulmonary fibrosis (IPF)

Andrew Ponomarev, Elena Popova, Marina Lebedeva, Sergei Bolevich, Vera Ospyenko. Pathology, Moscow Sechenov Medical University, Moscow, Russia; Russian Federation Pulmonology, Moscow Sechenov Medical University, Moscow, Russia; Russian Federation Pulmonology, Moscow Sechenov Medical University, Moscow, Russia; Russian Federation Pulmonology, Moscow, Russia; Russian Federation Pulmonology, Moscow, Russia

Aim: We assessed the clinical significance of markers of endothelial dysfunction in IPF patients.

Methods: Markers of ED were measured in blood samples of IPF patients. The study group included 28 IPF patients and 18 healthy controls. Markers of ED were measured using the assessment of endothelial dysfunction in the microcirculation.

Results: The study showed that IPF patients had significantly higher levels of markers of ED compared to healthy controls. The most significant differences were observed for markers of inflammation and oxidative stress.

Conclusions: The results of this study suggest that markers of endothelial dysfunction can be used as predictors of survival in IPF patients.
The broad spectrum of inflammatory activities which have been found increased in plasma and BALF of individuals with sarcoidosis.

Aims: We designed a study to analyze HNP’s role as markers of pulmonary involvement and functional impairment during sarcoidosis.

Methods: We enrolled 42 consecutive individuals with sarcoidosis, and 12 normal volunteers. Participants underwent pulmonary function tests, fiber-optic bronchoscopy and radiological evaluation. HNP concentration in BALF were measured by an ELISA test.

Results: Patients with sarcoidosis had higher BAL HNP concentrations as compared to volunteers (3.9±0.3 ng/ml vs 0.4±0.07 ng/ml, p<0.0001). Increased neutrophils with parenchymal involvement had higher BAL HNP levels than subjects without parenchymal involvement (4.5±0.3 ng/ml vs 2.2±0.3 ng/ml, p=0.02). A negative correlation was observed between HNP levels and pulmonary functional impairment (HNP%FEV1 rho= -0.33, p= 0.03; HNP%TLC rho=-0.33,p=0.03). ROC curve analysis revealed HNP as markers to discriminate patients with sarcoidosis from normal volunteers (Area Under the Curve =0.99, with 95%CI: 0.98-1.00; positive likelihood ratio = infinity, negative likelihood ratio = 0.02), and patients with pulmonary parenchymal involvement from patients with only bilateral hilar adenopathy (AUC of 0.83, with 95% CI: 0.69-0.96 positive likelihood ratio = 9.3, negative likelihood ratio =1.2).

Conclusions: Our results suggest that HNP may have a role as biomarkers for sarcoidosis diagnosis and as indicators of parenchymal involvement, functional impairment and disease severity during pulmonary sarcoidosis clinical course.

P3884
A role for cathepsin S in the pathogenesis of cystic fibrosis lung disease?
Siniad Weldon1, Paul McNally1, Christopher Scott1, Scott Randell1, Paul McCray2, Clifford Taggart3. 1Centre for Infection and Immunity, Queen’s University Belfast, Belfast, United Kingdom; 2Department of Pulmonary Respiratory Medicine, Our Lady’s Children’s Hospital, Dublin, Ireland; 3School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom; 4Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, United States; 5Department of Pediatrics, University of Iowa, United States

The pathogenesis of lung disease in cystic fibrosis (CF) has not been fully elucidated, however, neutrophil-dominated inflammation is thought to play a major role. Nonetheless, a number of proteases produced by other cells in the lung may play a potential role in CF lung damage. Human lysosomal cysteine proteases are a family of proteases that have been relatively unexplored in the area of CF lung disease. We have shown that cathepsin S activity is increased in CF bronchoalveolar lavage fluid. In addition to lung tissue degradation, cathepsins have been found to play a role in the destruction of host defence proteins such as SLPI, β-defensins and lactoferrin. These findings indicate a role for cathepsin S in the diminution of the lung antiprotease and antimicrobial screen possibly leading to lung destruction and favouring conditions for bacterial infection. We have identified epithelial cells as a source of cathepsin S in the CF lung with the demonstration that CF bronchial and tracheal epithelial cell lines express and secrete significantly more active cathepsin S than normal cells in the absence of proinflammatory stimulation. These findings were confirmed in primary human bronchial epithelial cells from CF patients. On the basis of our results to date, we postulate that upregulated cathepsin S plays an important role in CF lung disease and we are currently investigating reasons for this upregulation of cathepsin S in CF epithelial cells. This data will shed light valuable on the role of cathepsin S in CF, an area that has been overshadowed to date, and may open up new avenues for exploration in the search for an effective therapeutic target in CF lung disease.

P3885
Immune and inflammatory responses in induced sputum (IS) in Anderson Fabry disease (AFD), COPD and healthy volunteers
Nadia Shafia1, Derrylynn Hughes1,2, Anil Mehra1, Colette Smith1, Marc Lipman4,1, 5 Respiratory, Royal Free Hospital, London, United Kingdom; 2Haematology, Royal Free Hospital, London, United Kingdom; 3Medicine, University College London London Medical School, London, United Kingdom

AFD is an X-linked lysosomal storage disorder caused by mutations of the GLA gene. Reduced enzyme results in accumulation of storage material, leading to multi-organ pathology including airflow obstruction. Given the association between intra-cellular lipid and disease, we hypothesised subjects with pulmonary AFD would have detectable changes in airway immune/inflammatory cell profiles.

Methods: AFD and COPD subjects matched for GOLD stage plus healthy age/sex matched volunteers underwent lung function testing and sputum induction. IS cells were stained with combinations of CD3, CD4, CD8, CD16 & CD56 T cell populations from IS

<table>
<thead>
<tr>
<th>Group (median)</th>
<th>AFD AOs</th>
<th>AFD A0+</th>
<th>Normals</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>12</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>CD3+ T cell%</td>
<td>74.9%</td>
<td>90.3%</td>
<td>86.4%</td>
</tr>
<tr>
<td>CD4+ T cell%</td>
<td>40.3%</td>
<td>40.3%</td>
<td>36.6%</td>
</tr>
<tr>
<td>CD8+ T cell%</td>
<td>21.3%</td>
<td>21.3%</td>
<td>19.5%</td>
</tr>
<tr>
<td>CD16+ T cell%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.9%</td>
</tr>
<tr>
<td>NKT cell%</td>
<td>0.8%</td>
<td>0.8%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

*p<0.001 compared to AFD A0+.

antibodies and examined using flow cytometry for T cell populations including NKT cells, thought to be relevant to AFD immuno-pathology.

Results: 46% of AFD patients had evidence of airflow obstruction (AO+)*The% of total T cells in IS in AFD A0+ was greater than AFD A0 (p<0.01), and similar to COPD patients. AFD A0- had lower T cell% than seen in COPD (p<0.01). Other T cell populations including NKT cells were similar between groups.

Conclusions: Spumon T cell profiles in AFD and Airways obstruction are similar to those of COPD whilst AFD A0- are more like healthy volunteers. This suggests a role for T cells in AFD lung disease.

P3886
Surfactant protein D is critical for local immunomodulation in the distal lung
Michael Beers1, Deepika Jain1, Fabian Blank2, Yani Tomer1, Christophe von Garmer1, 1 Pulmonary and Critical Care Medicine, Univ of Pennsylvania, Philadelphia, PA, United States; 2Respiratory Medicine, Bern University Hospital, Bern, Switzerland

Surfactant Protein D (SP-D) is a multifunctional product of lung epithelial cells that mediates pulmonary host defense. SP-D deficient mice (SP-DKO) develop a progressive baseline phenotype of pulmonary inflammation, enhanced oxidative-nitrite stress, and lung remodeling punctuated by a morphologically heterogeneous population of monocellular alveolar cells and poor clearance of pathogens. To further define the role of SP-D as a local modulator of this immune cell population, bronchoalveolar lavage (BAL) cells recovered from SP-DKO and C57BL/6 controls (WT) were characterized using FACS, qRT-PCR, and functional assays. By FACS, over 95% of BAL cells from WT mice consisted of a morphologically homogenous population of neutrophils (PS/SSC) with an expression profile of F4/80+, CD11c+, Dectin-1, CD45+, Ly-6G, Ly-6C, consistent with alveolar macrophages. In contrast, SP-DKO BAL cells exhibited a dispersed PS/SSC profile with less than 10% of the second population expressing CD3, Ly6G or CD11b. By qRT-PCR, when normalized to F4/80, BAL cells from SP-DKO expressed greater amounts of iNos and Cox2. Functionally F4/80+ SP-DKO cells internalized significantly less zymosan particulate than F4/80+ WT cells. SP-DKO BAL cells in culture were hyporesponsive to stimulation by LPS and zymosan. In vivo, SP-D KO mice produced less TNF-a in response to intracheal zymosan or LPS. These data are supportive of a critical role for SP-D in modulation of the local immune response in the lung through effects on antigen-presenting cell differentiation, composition, and function.

P3887
Increased mast cell numbers in alveolar parenchyma in infants with respiratory viral infections
Geacicia Anderson1, Amadeu d’Garawi2, Thais Maud1, Jennifer Reed4, Michiko Mori5, Anders Bergqvist1, Manel Jordana2, Leif Bjermar1, Jonas Erjefält5. 1Center for Infection and Immunity, Queen’s University, Belfast, United Kingdom; 2McMaster University, Division of Respiratory Diseases and Allergy, Hamilton, Canada; 3São Paulo University, Department of Pathology, São Paulo, Brazil; 4Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, United States; 5Lund University, Experimental Medical Science/Airway Inflammation, Lund, Sweden

Background: Mast cells (MCs) play a sentinel role in innate immunity. However, little is known regarding the role of MCs in viral infections in human in vivo conditions. This study characterizes MCs in the lungs from infants who have died in acute respiratory viral infections.

Methods: In a mouse model of exposure to the common allergen house dust mite (HDM) during the course of an influenza infection.

Results: An increase in both MC T and MC TC numbers was observed in the alveolar parenchyma in infants infected with RSV, adenovirus (p=0.001), and influenza (p=0.02) compared to controls (WT). No differences were found in small airways or pulmonary vessels. High MC expression of pattern recognition receptors and pro-inflammatory cytokines were present in the infected lungs. In the mouse model, alveolar MC numbers were increased 3 weeks after infection (p=0.006), HDM (p=0.01) and when combining HDM and influenza (p=0.002) compared to saline treated controls. Increased MC numbers were still significant 6 week after infection.

Conclusions: These data demonstrate that a viral infection in peripheral airways evokes a rapid expansion of MC populations both in mice and humans. These findings support a role for MCs in the immune response to respiratory viral infections. Our animal data also indicates an important link between allergic sensitization and viral infection.

Abstract printing supported by G Chiesi. Visit Chiesi at Stand D.30
P3888

Establishment of reference values for differential cell counts in nasal lavage of healthy young adults.

Yang Yin, Jin-Jie Zhang, Kefang Lai, Nanshan Zhong. State Key Laboratory of Respiratory Diseases Guangzhou, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong, China.

Background: Upper airway inflammation could be reflected by nasal lavage cytology, which is characterized by neutrophils, eosinophils, and lymphocytes. However, reference values of nasal lavage cytology were not established.

Objectives: To establish reference values and positive standard for nasal lavage cytology through screening normal healthy subjects and patients with allergic rhinitis according to strict inclusion criteria.

Methods: 143 normal healthy volunteers (control) and 166 subjects with allergic rhinitis (AR) were enrolled after detailed history inquiry, physical examination and allergen skin prick test. Nasal lavage cytology tests were performed, and the standard for judgment was defined as the average count of different inflammatory cells per 20 fields under 200× microscopic vision.

Results: There was no statistical significance in gender constitutional proportion, age, height and weight among each group. The median (interquartile range) of neutrophils were 0 (0-12.6)×10^3/μL (0-76.4)×10^3/μL, respectively. The median (interquartile range) of eosinophils was 0 (0-0.65)×10^3/μL in AR group, which showed no statistical difference (P=0.05) with that of normal group (0 (0-0.56)×10^3/μL). A significant difference was found in the median (interquartile range) of eosinophils (6.90 (2.24-4.20)×10^3/μL) in AR group as compared with that of normal control group (0 (0-0.10)×10^3/μL, P<0.001).

Conclusions: Establishment of reference values of nasal lavage cytology test is helpful to discriminate normal individuals and patients with allergic rhinitis, but also a new tool for objective reflection on upper airway inflammation, which is of great value for scientific and clinical purposes.

P3889

The dietary antioxidant quercetin boosts pulmonary antioxidant defenses

Agnes Boos1,2,3, Carin Albrecht1, Brandstätter Olga1, Maja Hullmann1, Immanuel Förster1, Guido Hakenm1, Aalt Bast1, Roel Schims1,2, Petra Research, Leibniz Institute for Environmental Medicine, Duesseldorf, Germany; 2Toxicology, Maastricht University, Maastricht, Netherlands; 3Molecular Immunology, IFU - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany.

We have demonstrated that single oral supplementation of the dietary antioxidant quercetin reduces oxidative stress in sarcoidosis patients. Apart from its direct oxidant scavenging properties, quercetin has also been suggested to boost endogenous antioxidant defenses indirectly by activation of redblood signaling pathways. Therefore, we investigated the effect of orally applied quercetin on pulmonary redox balance.

C57BL/Ad mice were sacrificed 3 or 16 hours after receiving an oral quercetin bolus (6 mg/animal). Total antioxidant capacity, quercetin concentration and the expression of nuclear factor erythroid derived (Nrf2)-regulated antioxidant genes were evaluated. The possible influence of Nrf2 was also explored in vitro by treating quercetin-preloaded BEAS-2B human bronchial epithelial cells with the pro-oxidant tribromoblycin. Total quercetin concentrations in plasma and lung tissue displayed a rapid but transient increase, which was associated with enhanced total antioxidant capacity.

After the pro-oxidant tribromoblycin was exposed to CS in vitro, catalase, superoxide dismutase, heme oxygenase 1 and γ-glutamyl cysteine synthetase were observed. Additionally, oral quercetin administration increased Nrf2 gene expression. In the BEAS-2B cells, quercetin also activated Nrf2 and interestingly, this induction was augmented by bleomycin. Moreover, quercetin pre-treatment inhibited bleomycin-induced ROS production.

In conclusion, our results indicate that oral quercetin may exert beneficial effects by boosting pulmonary antioxidant defenses and suggest a possible involvement of Nrf2 herein. The therapeutic potential of our findings is currently being explored in a murine fibrosis model.

P3890

Clinical evaluation of angiogenesis and coagulation in pulmonary sarcoidosis.

Elena Popova1, Marina Lebedeva1, Andrew Ponomarev2, Sergei Bolevich2, Vera Oxypenko1,2. Pulmonology, Pathology, Moscow Sechenov Medical University, Moscow, Russian Federation; 2Radiology, 24 Moscow Hospital, Moscow, Russian Federation.

The aim of our study was to evaluate the influence on prognosis of patients with pulmonary sarcoidosis of some mediators autoimmunity and angioneogenesis and activation of coagulation (vascular endothelial growth factor (VEGF) and plasminogen activator inhibitor-1 (PAI-1)).

Patients and methods: 46 patients with morphologically proved pulmonary sarcoidosis were examined. Standard clinical examination, pulmonary function testing, 6-min walk test (6MWT), echocardiography, high-resolution CT (HRCT) were evaluated. Plasma concentrations and expression in lung biopsies of VEGF and PAI-1 were evaluated by immunoassay (ELISA) and immunochemistry. More-photometric of lung vessels were performed.

Results: 12 (26%) patients presented pulmonary hypertension (p<0.05, 35.3-53.8 mmHg, r=0.45). Plasma concentrations of PAI-1 and VEGF correlated positively with HRCCT patterns of fibrosis in lung (r=0.38, p=0.006 and r=0.37, p=0.002 respectively) and were more higher in patients with PH comparing to patients without PH (PAI-1 20.6 ± 15.1 (12.2-27.9) mmHg vs 14.9 (9.1-18.2) HRCCT, p=0.001 respectively and VEGF 42.4 ± 31.6 (15.4-52.8) mmHg vs 28.1 (18.0-360.2) HRCCT, p=0.001 respectively). VEGF expression in lung tissue correlated positively with morphology of pulmonary vasculitis (r=0.34, p=0.001), HRCCT honeycomb patterns (r=0.45, p=0.002).

Conclusions: Degree of alterations of the coagulation system and angioneogenesis may be discussed as survival prognostic markers for pulmonary sarcoidosis.

P3891

Detection of serum anti-endothelial cell antibodies (ACEA) in COPD rats

Yong Lin, Quan Zhang, Xue-Feng Ling, Si-Qing Sun. Pneumology, Zhong da Hospital, Nanjing, Jiangsu, China.

Background: Chronic obstructive pulmonary disease (COPD) may be a systemic disease of autoimmunity abnormalities. Autoimmune reactivity in COPD includes micro-vascular destruction. Anti-endothelial cell antibodies (ACEA) are a type of circulating antibodies which bind to endothelial antigens and induce endothelial cell damage. It is unclear whether the ACEA play a role in COPD mechanisms.

Objective: To detect the serum level of anti-endothelial cell antibody in adult rats of COPD in order to investigate the significance of ACEA in COPD mechanism.

Methods: Replicated COPD rat models with passive-smoking and lipopolysaccharide (LPS) were made. Anti-endothelial cell antibodies (ACEA) were measured by ELISA.

Results: In smoking rats with simple airway inflammation, the alveolar septum thickened but was not destroyed, ACEA149.4±4.7 ng/mL, COPD rats had airway inflammation and emphysema, ACEA 138.4±6.8 ng/mL. Compared with the normal group control (62.89±10.68 ng/mL), ACEA levels in the two test groups were much higher.

Conclusion: Autoantibodies which induce endothelial cell lesions may participate in the pathogenesis of COPD, detection of serum ACEA levels in COPD may have some clinical significance.

P3892

CD146 in the pathogenesis of COPD

Adelheid Kratzer1, Jonas Salys1, Hong Wei Chu2, Martin Zamora1, Laima Taraseviciene-Stewart1,1 Medicine, University of Colorado Denver, Denver, United States; 2Medical, National Jewish Health, Denver, United States.

Background: Chronic obstructive lung diseases (COPD) are the major cause of death and disability worldwide. The major risk factor for COPD is tobacco smoking. Cell adhesion molecule CD146 is expressed in all types of human endothelial cells (EC) and exists in a membrane-bound and soluble form (sCD146). The plasma concentration of sCD146 is modulated in inflammatory diseases associated with endothelial alterations.

Aims and objectives: To investigate the role of endothelial CD146 in the pathogenesis of cigarette smoke (CS)-induced emphysema.

Methods: Sprague Dawley rats were exposed to second hand CS for two months. The lung tissue and bronchoalveolar lavage (BAL) cells were examined for CD146 and protein expression and emphysema development as measured by ML1 scCD146 levels were determined in circulation and BAL fluid in rats and in patients with COPD. CD146 expression and function was also examined in rat pulmonary micro-vascular destruction. Anti-endothelial cell antibodies (ACEA) are a type of circulating antibodies which bind to endothelial antigens and induce endothelial cell damage. It is unclear whether the ACEA play a role in COPD mechanisms.

Results: Sprague Dawley rats exposed to cigarette smoke for 2 months developed significant emphysema changes (as measured by mean linear intercept) and had increased levels of circulating and bronchoalveolar lavage fluid sCD146. Treatment of rat pulmonary EC with cigarette smoke extract in vitro also resulted in a decreased membrane-bound CD146 expression and increased sCD146 levels in the medium. Moreover, circulating levels of sCD146 were significantly increased in serum of patients with COPD and correlated with the disease severity.

Conclusion: Our data indicate that CD146 is involved in CS-induced vascular dysfunction and that sCD146 can be a candidate marker for COPD/emphysema.

Funded by AHA 073538SN, FAMRI CIA 072053, Emphysema Research Fund and Baxter Family Foundation.

P3893

Effects of steroids on inflammatory cell number and function in the proximal and distal airways

Gregory Rankin1, Susan Wilson1, David Hall1, Jane Warner1. 1School of Medicine, University of Southampton, Southampton, United Kingdom; 2Respiratory CEDD, GSK Medicines Research Centre, Stevenage, United Kingdom.

Introduction: Steroids are often prescribed for patients with mild/moderate COPD but it is not clear how these commonly prescribed drugs affect inflammatory cell numbers/function in the proximal and distal airways.

Methods: Matched proximal and distal airways tissue was obtained from 37 patients. Fourteen patients had no evidence of airways obstruction (FEV1/FVC=0.58±0.02) and 23 had evidence of moderate COPD (FEV1/FVC<0.70) and 23 had evidence of moderate/mild COPD (FEV1/FVC<0.80) and 23 had evidence of moderate/mild COPD (FEV1/FVC<0.80). Eleven of these patients were prescribed steroids at the time of...
surgery. There were no differences in the characteristics of the patients prescribed steroids. Tissue was fixed in GMA and inflammatory cells enumerated by immunohistochemistry. Tissue explants were also stimulated with 100μg/ml anti-IgE and the release of TNFs assessed by ELISA.

Results: Patients prescribed steroids had fewer mast cells in their distal airways (median=23.6 AA1+ve cells/mm²) than either patients with no evidence of airways obstruction (median = 40.3 AA1+ve cells/mm²) or those with COPD but not prescribed steroids (median = 59.9 AA1+ve cells/mm²). There were fewer mast cells in the proximal airways of all three groups and no differences between the groups. The number of other inflammatory cells in either proximal or distal airways such as macrophages, neutrophils and CD3+ve cells were unaffected by either disease status or steroids. Anti-IgE induced TNFα release from tissue explants from proximal and distal airways was not affected by either the presence of airways obstruction or steroids.

Conclusions: Mast cell numbers are reduced in the distal airways of patients with mild/moderate COPD prescribed steroids. The distribution of other inflammatory cells are not affected.