247. Advances in lung function testing from infancy to adulthood

P2010
Lung growth and ventilation inhomoegeneity in health
Sooky Lum1, Samantha Sonnappa 1, Per Gustafsson 2, Angie Wade 3, Paul Aurora 4, Ah-Fong Hoo 4, Janet Stocks 1,2,3
Portex Respiratory Unit, UCL Institute of Child Health, London, United Kingdom; 2Department of Pediatrics, Central Hospital, Skövde, Sweden; 3Paediatric Epidemiology and Biostatistics, UCL Institute of Child Health, London, United Kingdom; 4Respiratory Medicine, Great Ormond Street Hospital for Children, London, United Kingdom

Lung clearance index (LCI), a measure of ventilation inhomoegeneity derived from multiple breath washout is more sensitive in detecting early lung disease than spirometry in preschool (PS) and school age (SA) children. In health, LCI appears to be stable in PS and SA children, but has been reported to be slightly higher during infancy. We aimed to develop a reference range for LCI from birth to 19y.

Methods: LCI data from two centres using a respiratory mass spectrometer (Annis 2000) & the inert gas SF6, measured using either a mask (0-5y) or mouthpiece (>5y), while supine (infant) or seated, were collated. 485 datasets from 359 healthy subjects (443boys; 257 from London; 102 from Goteborg; Range: age (0.1-18.7) years; height (52-196 cm)) were analysed.

Results: Height & age were significant predictors of LCI on univariable & multivariable analyses. Mean (SD) LCI was 7.2 (0.5) in infants (0.1-2y); 6.7 (0.6) in PS (3-5y); 6.5 (0.5) in SA (6-12y) and 6.5 (0.5) in those >13y. The inverse relationships between LCI & height or age were not linear, being most marked in the younger years & no longer significant by SA.

Conclusions: LCI was not significantly different between centres, after adjusting for height & age.

P2011
Specific airway resistance is overestimated during tidal breathing by a, a potentially useful technique in children unable to perform the panting maneuver (p), a reference technique to minimize the thermic artifact. Equipment softwares are implemented with algorithms to correct for this artifact when computing sRawb. It is not known how well this correction performs with reference to sRawb in children. The hypothesis tested here is that both techniques provide similar estimates of sRaw.

Objective: To compare sRawb and sRawp in children.

Methods: sRawb and sRawp were measured in 6 healthy children aged 7-10 years, using a commercially available pressure plethysmograph.

Results: sRawb (mean ± sd = 10.4±2.0 lpa/sec breathing rate = 0.5±0.1 Hz) was significantly larger (p=0.006) than sRawp (5.8±2.2 lpa/sec, breathing rate = 3.1±0.5 Hz). The finding hold true for Raw computed from the associated measurement of thoracic gas volume (Rawb = 6.3±1.2 lpa/sec/L, Rawp = 2.9±1.0 lpa/sec/L, p=0.005).

Conclusion: sRaw is significantly overestimated by pRaw compared with p. This is possibly explained by non instantaneous changes of gas temperature and humidity in the airways, a fact that may not be taken into account in the correction algorithm. The impact of overestimating sRawb’s - and hence Rawb - on routine airway function testing in patients has to be identified.

P2012
Impaired lung function in children born preterm is related to severity of neonatal lung disease
Karla M. Lange 1, James T.D. Gibbons 1,2,2, Shannon J. Simpson 2, Andrew C. Wilson 3, Jane Pillow 4,5, Graham L. Hall 2,3,1, School of Paediatrics and Child Health, Univ. of Western Australia, Perth, Australia; 2Paediatrics, Respiratory Physiology, Telethon Institute for Child Health Research, Perth, Australia; 3Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Australia; 4School of Women’s and Infants’ Health, Univ. of Western Australia, Perth, Australia; 5Centre for Neonatal Research & Education, School of Women’s and Infants’ Health, Univ. of Western Australia, Perth, Australia

Advances in neonatal care have led to a shift in the pathophysiology of bronchopulmonary dysplasia (BPD). The impact of contemporaneous preterm birth and BPD on long term respiratory health remains unclear. This study aims to relate mid-childhood respiratory function with neonatal variables in children born ≤ 32 w gestational age (GA).

Methods: Children aged 9 to 11 y (≤ 37 w GA controls, n=37; ≤40 born ≤32 w gestation including 53 with BPD) performed 4 lung function tests (forced oscillation, static lung volumes, spirometry and gas transfer (DLCO)). Associations between lung function (expressed as Z scores) and neonatal variables (GA, birth weight Z-score and durations of mechanical ventilation (MV) and O2) were explored using multiple linear regression.

Results: Children with BPD had increased respiratory resistance (Rrs) and reactance (Xc), reduced FEV1 and FEF25-75% compared to children born preterm without BPD and controls (one-way ANOVA; post-hoc comparisons p<0.04). DLCO was reduced in the BPD group compared to preterm but not healthy children (p<0.05). Static lung volumes were not different between groups. Duration of supplemental O2 was associated with increased Rrs (p<0.005) and reduced DLCO (p=0.01). Duration of MV was associated with increased Xc (p=0.001) and together with birth weight Z-score (p=0.02), was predictive of reduced FEV1 (p=0.005).

Conclusions: Children born ≤ 32w GA with BPD have worse lung function compared to preterm children without BPD. Impaired lung function in mid-childhood is associated with severity of neonatal lung disease as reflected by duration of MV and supplemental O2, further reinforcing the long-term impacts of preterm birth on lung health.

P2013
Interpretation of passive respiratory mechanics in infants: Should we normalise by body weight?
The Thanh Diem Nguyen 1, Ah-Fong Hoo 1, Sooky Lum1, Angie Wade 2, Janet Stocks 1,2,3, Portex Unit: Respiratory Physiology and Medicine, UCL, Institute of Child Health, London, United Kingdom; 4Centre for Epidemiology and Biostatistics, UCL, Institute of Child Health, London, United Kingdom

Introduction: Tidal volume (VT) and respiratory compliance (Crs) are commonly normalised for body weight, whether this is appropriate beyond the neonatal period or in weight restricted children remains unclear.

Aim: To examine the relationship between VT, Crs and growth in healthy infants.

Methods: The Jaeger BabyBody (v4.6) was used to assess lung function (LF) in healthy, sedated term Caucasian infants.

Results: Technically satisfactory VT and Crs from 140 infants [median (range) age: 38 (3-105) w] were available on 192 & 94 occasions respectively (Table). The average relationship between VT or Crs and weight was constant over time
but between-subject variability increased with growth (Fig. 1a&b). 95% Limits of agreement were similar in size between obese and controls but between-study variability increased with growth (Fig. 1c&d). Light-for-age babies had higher values than those who were heavier. This again may lead to misdiagnosis in particular in those with impaired growth (cf. EG).

Conclusions: Reporting infant LF/kg body weight is inappropriate. Equipment-specific regression equations are needed to avoid misinterpretation; for this a larger dataset is required. We would welcome contributions of similar data from other centres.

Table 1

<table>
<thead>
<tr>
<th>n</th>
<th>Mean (SD)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vf (ml kg⁻¹)</td>
<td>192</td>
<td>9.6 (1.3)</td>
</tr>
<tr>
<td>Cis (ml KPa⁻¹ kg⁻²)</td>
<td>84</td>
<td>127 (20)</td>
</tr>
</tbody>
</table>

P2014

Tracking of lung function obtained by whole-body plethysmography in infants and children with cystic fibrosis (CF)

Richard Kramer 1, Katharina Modelski 1, Aida Mashkour Najafi 2, Ernst Studalper 3, Sabina Galli 1, Department of Pediatries, University of Berne, Inselspital, Berne, Switzerland; 1Institute of Statistics, University of Technology, Graz, Austria; 2Division of Human Genetics, University of Berne, Inselspital, Berne, Switzerland

Rationale: The assessment of lung function tracking, (data stability over time and progression of lung function) within a wide age range (birth to adulthood) is crucial to better understand how genetic and environmental factors as well as treatment regimens influence lung function decline in CF.

Objectives: (i) Impact of lung function assessment during infancy on follow-up and lung function decline during childhood. (ii) Determination of physiological mechanisms influencing progression in CF in relation to the genotype.

Methods: Lung function was assessed in 70 infants (35 males, 35 females) with CF at ages 2.8 to 26.7 months as well as during childhood (4.3-18.4 years) by serial (infant)-whole-body plethysmography pertaining to functional residual capacity (FRCpleth) and effective airway resistance ($sReff$). Using predicted values obtained by LMS statistics (see abstract 854139), z-scores of FRCpleth and sReff were computed by Box-Cox transformation using the age-varying parameters L, skewness, M (median) and S (coefficient of variation).

Results: During infancy only 7.6% of CF patients presented with normal lung function; 33.3% showed either pulmonary hyperinflation or bronchial obstruction, but 59.1% presented with both. There was a significant association between later outcome represented by the LC and the FEF50. If genotypes are stratified according to the presence or absence of F508del and subgrouped according to the nature of mutations, FRCpleth and $sReff$ can achieve discrimination.

Conclusions: Evaluation of lung function by plethysmography is an important diagnostic and predictive tool, featuring good outcome parameters, and worth to be established early in life.

P2015

Pressure oscillations after airway interruption pre- and post-bronchodilator in wheezy preschool children

David Vézina 1, 2, 3, Cathopen Olden 1, 2, Peter Bridge 1, 3, Nicole Beydon 1, 2, Paul Seldon 2. 1Faculty of Computing, IS and Matha, Kingston University, Kingston, Surrey, United Kingdom; 2Respiratory, Royal Alexandra Children’s Hospital, Brighton, United Kingdom; 3Paediatric Respiratory Function, Royal London Hospital, London, United Kingdom; 4Lung Function Department, Armand Trousseau Hospital, Paris, France

Changes in mouth pressure during flow interruption (Pm0 transients) can be used to assess airway resistance (Rint). Initial pressure oscillations can cause difficulties in estimating Rint but are themselves a marker of airway status as their amplitude increases [1] with bronchodilator (BD) and decreases with methacholine [2].

To investigate this measurement, we analysed Pm0 transients pre- and post- bronchodilator in 13 preschool children with recurrent wheeze on 2 separate visits 4 weeks apart. The median (range) age of the children at the first visit was 52 months (38 to 64 months). The amplitude of the first upward oscillation as a proportion of end-expiration pressure was calculated and compared with Rint calculated by linear back extrapolation. The median value of at least 5 acceptable transients was assessed for each child. For each Pm0 transient and Rint by linear back extrapolation (LBE30/70).

Posc increased significantly (paired t-test) with BD both at visit 1, with mean (SD) pre 1.38 (0.25), post 1.63 (0.32) and visit 2, with pre 1.39 (0.29), post 1.61 (0.37). LBE30/70 decreased significantly with BD both at visit 1, mean (SD) pre 1.08 (0.27), post 0.88 (0.21) and at visit 2, pre 1.08 (0.26), post 0.92 (0.22). However there was no significant relation between Posc change and LBE30/70 change in response to BD (Pearson’s correlation coefficient).

These results suggest that Pm0 oscillation amplitude after flow interruption may provide an alternative measure of airway mechanics which merits further study.

References:

P2016

Cough flow volume profile in ataxia telangiectasia

Dagila Vitolin, Morina Lavce, Yacov Berkun, Anastasiya Nisenkorn, Yonit Halpert Levi, Raz Somech, Ori Efrati. The Pediatric Pulmonary Unit and Ataxia Telangiectasia National Clinic, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Affiliated with the Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Gan, Israel

Introduction: Weak coughing is perceived as the cause for recurrent respiratory system infection leading to lung function deterioration in Ataxia telangiectasia (AT)-disease. The cough profile of these patients has not been studied.

Aim: To explore the feasibility of the cough-flow-volume profile for detecting cough performance in A-T patients.

Methods: Thirty five A-T patients (age 12.7±4.9yrs) were studied. Patients performed forced expiratory flow volume (FVC) and maximal voluntary cough (FVC-cough) maneuvers. Analysis of data included: Inspiratory volume (IC) prior to cough, FVC-cough, Peak cough flow and number of spikes per maneuver. Values were related to publish data of healthy population of similar ages and are presented as actual and as% predicted.

Results: We found that IC prior to cough was 0.85±0.47 l (36.1±15.5%); FVC-cough was 1.00±0.51 l (43.6±15.4%); Peak cough flow was 3.27±1.53 l/s (45.5±15.0%); Peak cough flow to Peak expiratory flow ratio was 1.06±0.24 vs 1.48±0.22 in healthy and the number of spikes/maneuver were 2.0±0.8 vs. 6.1±2 in healthy population. All parameters were significantly lower than healthy (P<0.001). Additionally, Peak cough flow increased with age but the yearly increase rate was significantly lower than normal, (0.157 vs. 0.423 l/y;yearly, respectively, P<0.005).

Conclusions: Our findings indicate that A-T patients have a weak cough compared to healthy of similar ages and that cough ability worsens with age. Cough flow volume curve, as well as forced vital capacity maneuvers, should be considered a mainstay in the clinical assessment of A-T patients. The study was funded by the J. Baum foundation of the Israeli Lung Association, Tel Aviv, Israel.

P2017

The maximum oxygen consumption in children with asthma and/or obese children: A multi purpose assessment

Ilenna Bentaf1, Elena Bianchi1, Martina Tabaro1, Francesca Valenti1, Mario Canciani1, 1Allergology and Pulmonology Unit, Department of Pediatries, DPMSC, University of Udine, Udine, Italy; 2Hygiene Department, School of Medicine, DPMSC, University of Udine, Udine, Italy

Asthma and obesity have had an increasing trend in recent decades, constituting one of the major priorities in the health of children.

The aim of this study was to compare the respiratory function and oxygen consumption in four groups of children: obese, asthmatics, obese-asthmatic and controls, in order to assess their metabolic pattern and respiratory values.

Methods: 152 children, 8 to 16 y.o., divided as follows: 31 asthmatics, 42 controls, 56 obese and 23 obese-asthmatics children were tested. Every child performed spirometry, respiratory muscles (endurance) and oxygen consumption (VO2) evaluation, obtained on a cycloergometer according to a protocol of increasing effort.

Results: Spirometric values were comparable between obese and controls (average FEV1 105 and 107% pred, respectively), whereas there was a s.s. difference (p<0.05) between asthmatics and obese-asthmatics. Endurance was lower in obese (26.79 l) and obese-asthmatics (24.06 l) than in asthmatics alone (31.52 l) and controls (31.98 l), but without any s.s. difference (p>0.05). The maximal VO2 max was lower in obese (30.63 ml/kg/min) and obese-asthmatics (31.95 ml/kg/min) than in controls (37.19 ml/kg/min) or asthmatics (41.72 ml/kg/min) (p=0.0001 for each one).

Conclusion: The increase in body weight does not seem to affect spirometric values but obese children have a lower value of endurance, probably due to a respiratory muscle weakness and VO2/kg max was lower in obese than asthmatics, probably due to alterations in the cardio respiratory system.

P2018

Exercise induced bronchoconstriction and dyspnoea in asthmatic children

Guynar Dih-Nehme1, Cyril Schweitzer1, Silvia Varcheva1, Mathias Poussel1, Claude Chomé-Bonahel1, François Marchal1, 1Explorations Fonctionnelles Pédiatrues, CHU de Nancy - Université de Lorraine (EA 3450), Vandoeuvre, France; 2Explorations Fonctionnelles Respiratoires, CHU de Nancy - Université de Lorraine (EA 3450), Vandoeuvre, France; 3Medecine Infantile I, CHU de Nancy, Vandoeuvre, France

Introduction: Dyspnoea is thought to signal the mismatch between different in the respiratory system and metabolic needs. Dyspnoea is induced by airway obstruction but is variably expressed. A poor perception of dyspnoea has been hypothesized to be a determinant factor to life threatening asthma. Little data on the relationship between obstruction and dyspnoea are available in children.

Aim of the study: To establish the relation between exercise-induced bronchoconstriction (EIB) and dyspnoea in asthmatic children.

Methods: 53 asthmatic children (6 - 16 years old) were studied at baseline and 5 min after exercise. Dyspnoea was rated qualitatively-and quantitatively by the

352s
P2020

Bench test of an O2/CO2 sensor based MBW system using a lung model
Florian Singer1, Chiara Abbasi1, Emilia Wiklund1, Paul Robinson1.
Philipp Latzin1, Per Gustafsson2. 1Division of Pulmonology, Department of
Paediatrics, University Children’s Hospital, University of Bern, Bern, Switzerland; 2Division of Pulmonology, Department of Paediatrics, Central
Hospital, Sökeved, Sweden; 2Department of Pneumology, The Children’s Hospital at Westmead, Westmead, Australia

Lung volume assessment using tracer gas multiple breath washout (MBW) systems needs validation under realistic conditions. We used a lung model allowing for different tidal volumes (TVs), functional residual capacities (FRCs), and respiratory rates (RRs) under BTPS conditions. We tested a nitrogen (N2) MBW prototype (Exhalyzer D; Eco Medics) based on an ultrasonic flowmeter, a main-stream CO2, and a side-stream O2 sensor.

Linearity of O2 and CO2 sensors was assessed after two point calibration using a mass spectrometer (AMIS 2000; Innovision). For FRC measurements, a double chamber plexiglass lung model was filled with water, heated, and mechanically ventilated at various ranges of FRCS (900 to 4000 mL), TVs (250 to 850 mL), and RRs (30 to 15/min). N2 MBW tests (n = 71) using 100% O2 were done on three days. Using custom designed software (TestPoint) we synchronized gas to flow signals to preset and manually optimized settings, and calculated FRC as cumulative expired N2 volume divided by the difference of MBW start minus end N2 concentration. O2 and CO2 sensors were linear (linear regression R2 was 0.99 for both). Using preset synchronization settings, mean difference of lung model minus measured FRCS was -7.4 mL (0.04% of mean FRCS), limits of agreement ranged from 160.4 mL to -175.2 mL (5.8% to -5.9% of mean FRCS). After optimized synchronization, mean difference of FRCS was -7.7 mL (0.25% of mean FRCS), limits of agreement ranged from 50.8 mL to -66.2 mL (1.8% to -2.3% of mean FRCS). This lung model seems suitable for validation of MBW systems. The new N2 MBW system precisely measures in vitro FRCS under realistic conditions. Careful synchronization of signals is crucial for accurate FRC measurements.

P2021

Reference data transition of whole-body plethysmography from infancy to childhood
Richard Kremer1, Aida Mashkouri Najafi2, Ernst Stadlober2. 1Department of
Paediatrics, University of Berne, Inselspital, Berne, Switzerland; 2Institute of
Statistics, University of Technology, Graz, Austria

Rationale: Advances in plethysmographic measurement techniques have made it possible to obtain lung function data in infants [1] and children. However, application remains limited by the lack of appropriate transitional normative data from infancy to childhood, especially for effective specific airway resistance (sReff).

Objectives: On previously collected lung function data, updated prediction equations were modeled spanning from infant’s years to childhood, using the LMS method.

Methods: Normalice lung function data from 67 healthy young infants aged 2.3 to 28.2 (10.0±6.3) months and children aged 5.1 to 16.8 (10.4±2.9) years were evaluated, and prediction equations for functional residual capacity (FRCpleth), and sReff were computed. Applying the LMS method in R environment using GAMLSS package [2] the changing distribution of the measurements is summarized by three curves representing the median (M), coefficient of variation (S) and skewness (L) in relation to age.

Results: The present prediction equations feature the first attempt to provide continuous normative data of infants with a smooth transition into childhood (Table 1).

Conclusions: Updated prediction equations of plethysmographic data for infants and children applying LMS statistics provide a new basis for longitudinal evaluation of lung function in children with lung disease.

References:

Abstract P2021 – Table 1

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>S</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRCpleth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boys</td>
<td>127.77 + 162.52±age</td>
<td>0.1213 ± 0.0046±age</td>
<td>0.0003±0.0025±age</td>
</tr>
<tr>
<td>Girls</td>
<td>128.42 + 167.9±age</td>
<td>0.0085 ± 0.0035±age</td>
<td>0.0004±0.0025±age</td>
</tr>
<tr>
<td>sReff</td>
<td>0.39 + (age)/130.24 + 21.51±age</td>
<td>0.12 + (age)/247.9 + 33.88±age</td>
<td>0.17 + 0.0034±age</td>
</tr>
<tr>
<td>Boys</td>
<td>0.39 + (age)/59.88 + 14.38±age</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Girls</td>
<td>0.39 + (age)/59.88 + 14.38±age</td>
<td></td>
<td>0.37</td>
</tr>
</tbody>
</table>
P2022

Comparison of a new nitrogen multiple breath washout method to mass spectrometer SF6 washout in cystic fibrosis subjects

Emilia Viklund1, Andreas Lindblad1,2, Paul Robinson1, Birgitta Houlé1, Linda Bergh1, Monika Rosberg1, Per Gustafsson1,2,1 Department of Paediatrics, Central Hospital, Skövde, Sweden; 2Cystic Fibrosis Center, Queen Silvia Children’s Hospital, Gothenburg, Sweden; 3Departments of Respiratory Medicine, Children’s Hospital at Westmead, Sydney, New South Wales, Australia; 4Clinical Physiology, East Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden; 5Pediatric Clinical Physiology, Queen Silvia Children’s Hospital, Gothenburg, Sweden.

Background: The lung clearance index (LCI) obtained from SF6 multiple breath washout (MBW) is a sensitive index of peripheral airway dysfunction in cystic fibrosis (CF) [1]. SF6 LCI values are lower and show stronger agreement between laboratories than historical N2 LCI using conventional N2 analysers [1]. Formal comparison between the two types of MBW systems has not been previously performed to date. This study compared FRC and LCI obtained using both methods: mass spectrometer SF6 MBW and a new indirect N2 MBW system (Exhalyzer D, EcoMedics, Daenem, Switzerland) in CF subjects.

Methods: 10 CF subjects, median (range) 17 (15-40) yrs performed MBW in triplicate using an SF6-based mass spectrometer MBW system and an Exhalyzer D indirect N2-based MBW system (main stream infrared CO2 sensor, side stream laser O2 sensor). FRC and LCI were calculated using similar software algorithms. Results expressed as mean (SD) and between-test comparisons made using students t-tests.

Results: There was no significant difference between FRC values (N2 FRC 2.82 (0.71) vs. SF6 FRC 2.53 (0.70), p=0.37), however N2 LCI 12.52 (3.14) was significantly higher than SF6 LCI 9.77 (2.46) (p=0.043). Within-session repeatability (coefficient of variation, CV%) did not differ between the groups: N2 FRC 6.3 (2.9%) vs. SF6 FRC 5.5 (3.1%), and N2 LCI CV 5.0 (3.6%) vs. SF6 LCI CV 4.7 (2.8%).

Conclusions: LCI values obtained with the new indirect N2 MBW system were greater than those obtained with the current gold standard SF6 mass spectrometer based system. FRC values and within-session repeatability were similar.

References:

P2023

Excluding extreme breaths from analysis can change conductive airway ventilatory inhomogeneity by over 25% in cystic fibrosis

Noor Al-Khathlan1, Ruslan Garpop1, John Owens-Bradley1, Erel Gaillard1,2, Caroline Berge1,2,1,2,3, Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; 2Institute for Lung Health, Leicester, United Kingdom; 3Physics, Nottingham University, Nottingham, United Kingdom.

Gas washout tests assess ventilatory inhomogeneity. Analysis of normalised phase 3 slopes (SnIII) allows differentiation of inhomogeneity of conducting and acinar airways (Sncond and Snac) Standardising data collection and analysis in subjects with a wide range of tidal volumes remains problematic, though multiplying each Sn by the expiratory tidal volume (V0) of the breath has been used as a correction. Our Aim was to examine the effect of excluding breaths with extreme V0 on Sncond.

Methods: We performed multi-breath nitrogen washout in 16 children with CF aged 17 yrs. An auditory signal indicated when the child had inspired a pre-determined V0. Measurements were performed in triplicate in all except 2 and analysed with a custom-built programme: SnIII from every breath was plotted against lung turnover (TO) was calculated for all data between 1.5 and 6 TO to determine Sncond. Analysis was performed using custom-built software.

Results: The number of breaths between 1.5 and 6 TO ranged from 7-29. 15 children had 1-10 extreme breaths excluded, which had no effect on Sncond for the group as a whole (mean, 95%CI: -0.0015, -0.0076 to 0.0046, p= 0.61). In 5/16 cases Sncond altered by <25%. Biggest changes were seen in those with lowest values of Sncond. Size and direction of the change was unrelated to the number of breaths excluded.

Conclusion: Retaining or excluding individual breaths can make a significant difference to Sncond which may be relevant in longitudinal studies.

P2024

Double tracer gas single breath washout – Comparison with conventional lung function tests in children with and without cystic fibrosis

Florence Xiagou1, Ch prefab 1, Ch prefab 2, Georgette Stern1, Elisabeth Kieninger1, Oliver Fuchs1, Nicolas Regamey1, Per Gustafsson1, Carmen Casaulta1, Urs Frey1, Philipp Latzin2,3,4, Division of Pulmonology, Department of Paediatrics, University of Bern, Bern, Switzerland; 2Division of Pulmonology, Department of Paediatrics, Central Hospital Skövde, Skövde, Sweden; 4Department of Paediatrics, University Children’s Hospital Basel (UKBB), Basel, Switzerland.

A single tidal breath washout (SBW) has been shown to have potential as new lung function test. We calculated indices describing the shape of the SBW curve, and investigated their variability and association with conventional lung function tests in cystic fibrosis (CF) and healthy children. 70 CF children, mean (SD) age 11.7 (3.5) years, and 42 healthy children aged 11.5 (3.9) years performed nitrogen multiple breath washout (MBW) and helium and sulfur hexafluoride SBW using a side-stream ultrasonic flowmeter (Eco Medics AG). 8 CF children and 10 controls performed MBW and SBW on a second day. Molar mass SBW curves were plotted vs. expired volume. MM-slopes of tidal phase II and III (MM_SII, MM_SIII), and area under the MM curve (AUC) were calculated. Mean (SD) between-test coefficient of variation (CV%) for MM_SII, MM_SIII, and AUC was 15.5 (13.4%), 7.8 (6.5%), respectively. All three CV% were similar between CF and healthy children. MM_SIII was associated with expired tidal volume (TV) and mean tidal flow (MTEF), and MM_SII and MM_SIII differed significantly between CF and healthy children. MM_SIII and MM_SII were associated with the lung clearance index (p<0.001 for both) but not with spirometry indices. AUC was not associated with lung function test parameters.

We identified double tracer gas SBW indices reliably characterizing ventilation inhomogeneity (VI) and separating healthy from CF children despite considerable overlap. More detailed analyses are needed to better understand underlying patho-physiological phenomena and to obtain additional yet unknown information on VI from this test.

P2025

Quality control of spirometry in children: Can ER/ATS criteria replace visual inspection?

Gusela Kneitz1, Christine Müller-Brandes1, Monika Gappa1, Gabriele Seiner-Sorge1, Andrea von Berg2, Antje Schuster4, Christine Beckmann1, Sabina Ilki3, Matthias Wisbauer4, Dietrich Benecke1.

1Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; 2Department of Anaesthesiology, IFU - Leibniz Institute of Environmental Medicine, Düsseldorf, Germany; 3Children’s Hospital and Research Unit, Marien Hospital, Wesel, Germany; 4Department of Anaesthesiology and Intensive Care, Medical School Hannover, Germany; 5Pediatric Cardiology and Pneumology, University Hospital, Düsseldorf, Germany; 6Pediatrics, University Hospital, Munich, Germany.

Expert’s visual rating is an integral part of quality control for spirometry but is not always in detail. In our multi-centre reference study (LuNoKiD) we investigated whether quality criteria based on back-extrapolated-volume (BeV), reproducibility and forced-expiratory-time (FET) are feasible and can replace visual inspection. Caucasian children 4 to 18 years old were recruited. Spirometry was carried out according to international standards under field conditions. Experts rated visual acceptability of each curve (9 per individual). We tested feasibility, sensitivity and specificity of the currently recommended quality control criteria, and determined optimal cut-offs and combinations of the three computer-based quality measures using visual acceptability as gold standard.

A total of 3333 of 3504 investigated subjects were healthy and included. 72% of these had visually acceptable flow-volume curves. In this group, 95% met ATS/ERS recommendations for BeV, 90% for reproducibility and 47% for FET. Best correspondence with visual acceptability was reached when choosing the cut-offs 4.6% for BeV (in percent FVC) and 1.8 sec for FET. The best combination of the three measures showed good overall concordance with visual acceptability but still a specificity of 56% only. Our study supports the hypothesis that - in contrast to BeV and reproducibility - ATS/ERS-recommended cut-offs for FET are not feasible under field conditions. The low specificity of the optimal combination of the three quality measures further demonstrates that these cannot replace visual control.

P2026

Relationship between lung function using forced oscillation technique (FOT) with recent symptoms in young children with asthma

Afad Alhossou1, Judy Park1, Stephen Stick1,2, Graham Hall1,2,3, School of Paediatric and Child Health, University of Western Australia, Perth, Western Australia, Australia; 2Department of Paediatric Respiratory Physiology, Telethon Institute for Child Health Research, Perth, Western Australia, Australia; 3Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.

Background: Use of FOT to assess lung function in young children is increasingly reported in the clinical setting. However, associations between bronchodilator responsiveness (BDR) as assessed by FOT and recent symptoms in young children with asthma have not been reported. We aimed to investigate the relationships between recent respiratory symptoms and BDR using FOT in young children with asthma.

Methods: 70 children (aged 3 to 6y) with mild asthma were studied twice 5 months apart. FOT (resistive 8 Hz, Rs8 and Rsx8, respectively) was measured prior to and 15 mins following Salbutamol (600 μg) inhalation. The BDR was assessed using absolute and relative changes in Rs8 and Rsx8. Respiratory symptoms in the month prior to each visit were obtained using daily diary card. We performed regression analyses assessing the impact of respiratory symptoms on the transformed absolute and relative BDR in Rs8 and Rsx8.

Results: Pre- and post BID Rs8 and Rsx8 data were obtained from 70 children at visit 1, and 56 children at visit 2. There were no differences in BDR for Rs8 with any reported symptoms. In contrast, Rsx8 BDR was significantly larger (p<0.05)
Conclusions: In children with mild asthma increasing symptom incidence requiring reliever use is associated with an increased BDR in Xrs8. These data suggest that symptoms in early childhood asthma result in alterations in peripheral airways function. Alternatively, it may indicate that the FOT is poorly sensitive to asthma related lung disease in young children. Further research addressing this question is required.

P2027
In vitro validation of nitrogen multiple breath washout using ultrasonic equipment
Susanne Fuchs¹, Christian Buess², Monika Gappa¹. ¹Childrens Hospital and Research Institute, Marien Hospital Wesel, Wesel, Germany; ²R&D, ndd Medizintechnik AG, Zurich, Switzerland

Over the last years, ultrasonic equipment for Multiple Breath Washout (MBW) including measurement of functional residual capacity (FRC) and assessment of ventilation inhomogeneity has been developed (EasyOne Pro, ndd Medizintechnik AG, Switzerland). Accuracy of the ultrasonic flow sensor has been demonstrated against mass spectrometry. Validity and feasibility have been demonstrated in single and in multi-centre studies using SF6 as the tracer gas. Recently, the washout procedure has been changed to nitrogen washout. All analysis steps, including delay correction between flow and side-stream molar mass signals were automated to facilitate clinical use.

However, calculation of both, FRC and parameters of ventilation homogeneity depend on accuracy of the underlying algorithms. The aim of the present study was to assess the accuracy of the EasyOnePro software for calculating FRC from nitrogen MBW using a novel lung model.

The lung model consists of an inner and an outer water-filled Plexiglas chamber (Soloplex AB, Sweden) and is driven by a mechanical ventilator (Evita, Dräger, Germany), the water level of the inner chamber, which is partially separated by a wall to allow ventilation, determines the target FRC. 60 measurements were performed using FRC target volumes between 350 and 4000 ml. Respiratory rates were set between 10 and 20 min⁻¹ and tidal volumes between 300 and 800 ml. Within-test repeatability of three measurements was below 0.76% for all settings. Mean difference between target FRC and measured FRC was 3.28% (95% CI -45 ml; -31 ml). We conclude that the Easy One Pro Software accurately calculates FRC.