P1184
Peripheral airway function in adults with sickle cell disease
Alice Chubb1, Alan Lunt1, Moira Dick2, David Rees2, Sue Height2, Swee Lay Thein3, Gerrard F. Rafferty1, Anne Greenough1. 1Division of Asthma, Allergy and Lung Biology, King’s College London, London, United Kingdom; 2Department of Paediatric Haematology, King’s College Hospital, London, United Kingdom; 3Department of Molecular Haematology, King’s College Hospital, London, United Kingdom

Aim: Impulse oscillometry (IOS) requires minimal patient co-operation and assesses peripheral airway function. Our aim was to determine whether IOS indices were useful to identify lung function abnormalities in adults with sickle cell disease (SCD).

Methods: IOS measurements were performed on 36 adults, homozygous for sickle cell haemoglobin (HbSS), mean age 40.77 (± 13.80) years; the controls were 10 ethnically matched subjects. Respiratory system resistance (Rrs) at oscillation frequencies of 3Hz (Rrs3), 5Hz (Rrs5), 10Hz (Rrs10), 15Hz (Rrs15) and 20Hz (Rrs20), respiratory system reactance (Xrs) at an oscillation frequency of 5Hz (Xrs5), resonant frequency (fres) and reactance area (AX) were recorded. Frequency dependence of resistance between 3 and 20Hz (f-dr) was also calculated.

Results: Rrs was raised at all oscillometry frequencies in the SCD patients. Xrs5 and AX were increased in SCD patients (p= 0.00091, p=0.0006 respectively). The slopes of the linear transformations of frequency dependence of resistance (f-dr) curves were negative in SCD patients, but not in the controls (p<0.0001).

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>SCD patients</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rs 3 Hz (kPa l⁻¹ s⁻¹)</td>
<td>0.4150 (0.3050–0.4525)</td>
<td>0.5300 (0.4225–0.6845)</td>
<td>0.0034</td>
</tr>
<tr>
<td>Rs 5Hz (kPa l⁻¹ s⁻¹)</td>
<td>0.3550 (0.2750–0.3950)</td>
<td>0.4575 (0.3685–0.5838)</td>
<td>0.0026</td>
</tr>
<tr>
<td>Rs 10Hz (kPa l⁻¹ s⁻¹)</td>
<td>0.3050 (0.2550–0.3525)</td>
<td>0.3700 (0.3155–0.4565)</td>
<td>0.0077</td>
</tr>
<tr>
<td>Rs 15Hz (kPa l⁻¹ s⁻¹)</td>
<td>0.2800 (0.2450–0.3400)</td>
<td>0.3225 (0.2800–0.4058)</td>
<td>0.0341</td>
</tr>
<tr>
<td>Rs 20Hz (kPa l⁻¹ s⁻¹)</td>
<td>0.2650 (0.2475–0.3250)</td>
<td>0.3400 (0.2713–0.3924)</td>
<td>0.0377</td>
</tr>
<tr>
<td>Xrs 5Hz (kPa l⁻¹ s⁻¹)</td>
<td>-0.1000 (–0.1070, –0.0710)</td>
<td>-0.1410 (–0.2296, –0.0970)</td>
<td>0.0091</td>
</tr>
<tr>
<td>AX</td>
<td>0.2050 (0.1300–0.3875)</td>
<td>0.7100 (0.4225–1.881)</td>
<td>0.0006</td>
</tr>
<tr>
<td>Slope</td>
<td>0.0030 (0.00275–0.00625)</td>
<td>-0.2647 (–0.3676, –0.1977)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Conclusion: These results suggest adults with SCD have peripheral lung changes.
P1185
Assessment of tracheobronchomalacia in relapsing polychondritis using impulse oscillometry
Hiroshi Hanada1, Hiroki Nishine1, Hirokata Kida2, Takeo Inoue1, Masamichi Mineshita1, Noriaki Kurimoto2, Terumi Miyazawa1. 1Division of Respiratory and Infectious Diseases, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan; 2Division of Chest Surgery, Department of Surgery, St. Marianna University School of Medicine, Kawasaki, Japan

Background: Airway involvement in relapsing polychondritis (RP) includes airway inflammation, airway narrowing and malacia. Systemic corticosteroid and immunosuppressive therapy does not always improve airway involvement making pulmonary interventions such as balloon dilation and stenting necessary. Impulse oscillometry (IOS) measurements can be safely performed in patients with airway involvement during quiet breathing before and after pulmonary intervention.

Objectives: To confirm whether IOS can assess airway involvement in RP.

Methods: Fifteen patients diagnosed with RP, based on McAdam’s criteria participated in this study. Airway disease including: airway narrowing, airway wall thickness, calcification and malacia were confirmed by computed tomography (CT). IOS was performed in all patients and respiratory resistance (Rrs) and respiratory reactance (Xrs) were calculated in frequency ranges of 5Hz increments from 5 Hz to 50 Hz.

Results: Five patients developed into tracheobronchomalacia (TBM). R5-R20 and X5 showed a significant difference between patients with TBM and patients with only airway involvement (AIR) (R5-R20-TBM: 0.48±0.21 kPa/L/s, AIR 0.15±0.27 kPa/L/s, p<0.005, XS: TBM -0.48±0.17 kPa/L/s, AIR -2.22±0.25 kPa/L/s, p=0.013). IOS was measured before and after stenting in 1 patient and a marked improvement was seen after stenting (before: R5 0.95±0.4 Pa/L/s, R5-R15 0.46±0.16 Pa/Ls, X5 0.5±0.4 Pa/L/s, X5-R15 0.29±0.14 Pa/L/s, X5 0.09±0.1 Pa/L/s, -0.9±0.1 Pa/L/s). Fres 9.13±5, R5-R20 0.02 Pa/L/s).

Conclusions: IOS was useful in the evaluation of airway involvement in RP and R5-R20 and X5 were practical markers to differentiate patients with TBM.

P1186
Diagnostics of loss in lung elastic recoil pressure using impulse oscillometry and body plethysmography
Larisa Kryukhina, Marina Kameneva. Lung Function Laboratory, Research Institute of Pulmonology I.P.Pavlov State Medical University, Saint-Petersburg, Russian Federation

Respiratory resistance at 20 Hz (R20) by impulse oscillometry (IO) characterizes airways resistance with inextensible walls. Airways resistance (Rtot) by body plethysmography reflects the total resistance of the first 8 - 10 bronchi generations. These indicators by different methods are close physiologically. The airways in patients with an embryopathy are deprived of elastic support, so a lung compliance (CL) considerably increases. We have assumed that shifting of R20 increases with loss of lung elastic recoil.

Aim of the study is evaluation loss of respiratory resistance by IO with increasing respiratory reactance (Xrs) measured by IOS at 20 Hz. There is a significant correlation between airway resistance measured by IOS at 5Hz but no significant correlation with airway resistance measured by IOS at 20 Hz. There is a significant correlation between airway resistance measured by body plethysmography and airway resistance measured by IOS at 5 Hz and 20 Hz.

Methods: We compared R20 in healthy volunteers (32F/33M, 47±1 yrs) and in patients with obstructive disorders - 41 patients with COPD (18F/24M, 56±1 yrs) and 52 patients with bronchial asthma (34F/18M, 47±2 yrs). We have used the relation Rtot/R20. All patients were performed investigation of lung elasticity using esophagus balloon.

Results: R20/Rtot in healthy group was 0.79±0.03 and in patients with obstructive disorders it was 1.72±0.10 (p<0.001). The analysis R20/Rtot in patients with obstructive disorders showed considerable difference of R20/Rtot value in patients with normal lung elastic recoil and in patients with loss lung elastic recoil (1.24 and 2.08 accordingly, p<0.001). The correlation analysis showed moderate dependence R20/Rtot with CL and coefficient of retraction (CR) (r=0,57 and –0,38 accordingly, p=0.03).

Conclusion: The relation R20/Rtot reflects loss in parenchymal elastic recoil pressure. In healthy and patients with obstructive disorders with normal lung elastic recoil it is less 1,24.

P1187
Direct airway resistance response after deep inspiration in symptomatic asthmatics
Karim van der Velden-van Etten, Karin Nietzman-Lammering, H.C. Hoogsteden. Dept. of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands

Introduction: Immediately after a deep inspiration there is a response in the airway resistance. In patients with asthma the response to deep inspiration (DI) is impaired compared with healthy subjects.

Aim: We want to investigate the airway resistance response after DI changes when subjects are exposed to a bronchoconstrictor.

Methods: All subjects were symptomatic asthmatics. They all performed a tidal breathing challenge test (Mch) with methacholine bromide from 0.039-39.6 mg/ml in doubling doses. After each inhalation the airway resistance was measured by impulse oscillometry (IOS/PFT, Care Fusion, Wurzburg) during 60-80 seconds with a DI at 30s. At 90 s FEV1 was measured. P-values >0.05 were assumed to be significant.

Results: We analyzed 24 tests. One patient was excluded because of spirometric induced asthma. In 12 cases we found a PC20 <16 mg/ml. In 11 patients there was no PC20 or a PC20 >16.

Results
<table>
<thead>
<tr>
<th>PC20<16</th>
<th>PC20>16</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=12</td>
<td>n=11</td>
<td></td>
</tr>
<tr>
<td>Mean at baseline R5 (kPa/L/s) 0.37</td>
<td>0.28</td>
<td>0.072</td>
</tr>
<tr>
<td>R5-R15 (kPa/L/s) 0.08</td>
<td>0.06</td>
<td>>0.05</td>
</tr>
<tr>
<td>ΔR5 0.008</td>
<td>0.006</td>
<td>>0.05</td>
</tr>
<tr>
<td>ΔR5-R15 0.004</td>
<td>0.000</td>
<td>>0.05</td>
</tr>
<tr>
<td>Mean at highest concentration R5 (kPa/L/s) 0.66</td>
<td>0.45</td>
<td>0.005</td>
</tr>
<tr>
<td>R5-R15 (kPa/L/s) 0.26</td>
<td>0.15</td>
<td>0.038</td>
</tr>
<tr>
<td>ΔR5 0.08</td>
<td>0.04</td>
<td>>0.05</td>
</tr>
<tr>
<td>ΔR5-R15 0.03</td>
<td>0.03</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

ΔR5 is the difference in R5 before and after DI. ΔR5-R15 is the difference in R5-R15 before and after DI.

We found a significant difference in ΔR5 between baseline and the highest concentration both in cases and non cases (resp: p=0.024 and p=0.022).

Conclusion: When PC20 is reached there is still an overall decrease in airway resistance after DI. Compared to those who didn’t reach PC20 <16 the decrease is not significant but both groups had a high SE. The response to DI is highly variable in asthmatics.

P1188
Agreement of airway resistance measurements by two different techniques of body-plethysmography and impulse oscillometry in asthmatic patients
Afar Sharifit, Khalid Ansarit. Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Azarbayjan Sharqi, Islamic Republic of Iran Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Azarbayjan Sharqi, Islamic Republic of Iran

Background: Airway resistance can be measured by different techniques of body-plethysmography and impulse oscillometry (IOS). So far there has been no systematic study comparing validity of these techniques in relation to clinical condition of the patients reported.

Aims and objectives: We investigated correlation between these techniques in assessment of airway resistance and asthma control test.

Methods: In 92 patients with asthma selected on the basis of ATS criteria for diagnosis of asthma and GINA asthma control test (ACT) questionnaire completed. Pulmonary function tests including body-plethysmography with airway resistance measurement and impulse oscillometry measuring total airway resistance at 5 Hz and 20Hz was done using IOS.

Results: ACT score has a significant correlation with r value of - 0.34 with total airway resistance measured by body-plethysmography (p=0.003) and also significant correlation with r value of - 0.31 (p=0.002) with airway resistance measured by IOS at 5Hz but no significant correlation with airway resistance measured by IOS at 20 Hz. There is a significant correlation between airway resistance measured by body plethysmography and airway resistance measured by IOS at 5 Hz and at 20 Hz.

P1189
Sgaw as an alternative for FEV1 in the measurement of airway responsiveness to methacholine in patients experiencing chronic cough
Remco Boksem, Maria Habes, Reindert van Steenwijk. Lung Function, Academic Medical Centre (AMC), Amsterdam, Netherlands

Background: A drop of 50% in specific airway conductance (Sgaw) during a methacholine challenge test (MCT) is considered to be comparable to a drop of 20% in FEV1 to assess airway hyperresponsiveness (AHR). In our department patients with chronic cough tested with a MCT on a drop of FEV1 show an increase in cough without reaching a conclusive PC20.

Aim: To examine the correlation between drops in FEV1 and Sgaw during MCT in chronic cough patients.

Methods: 16 patients with history of chronic cough were included for a cross-sectional study. Inclusion criteria: episodic chest symptoms, chronic cough and post bronchodilator FEV1/FVC ratio ≥ 0.70. Each concentration in MCT was followed by measurement of Sgaw and FEV1. Linear regression was used to determine the correlation between PC20FEV1 and PC20Sgaw.

Results: LogPC20Sgaw was significantly lower than log PC20FEV1 p=0.004. 7 patients showed a positive response only to Sgaw (Figure 1). We found that a decrease of 20% in FEV1 was accompanied by 65% decrease in Sgaw.
Implications: Chronic cough patients may exhibit AHR that remains unnoticed when performing MCT with FEV1.

Conclusions: Patients with chronic cough show a larger response to methacholine by sGaw as compared to FEV1 than reported in the literature. This suggests that in this set of patients sGaw is relatively more sensitive in assessing AHR by sGaw as compared to FEV1 than reported in the literature. This suggests that in this set of patients sGaw is relatively more sensitive in assessing AHR by sGaw as compared to FEV1 than reported in the literature. This suggests that in this set of patients sGaw is relatively more sensitive in assessing AHR by sGaw as compared to FEV1 than reported in the literature. This suggests that in this set of patients sGaw is relatively more sensitive in assessing AHR by sGaw as compared to FEV1 than reported in the literature. This suggests that in this set of patients sGaw is relatively more sensitive in assessing AHR by sGaw as compared to FEV1 than reported in the literature. This suggests that in this set of patients sGaw is relatively more sensitive in assessing AHR by sGaw as compared to FEV1 than reported in the literature. This suggests that in this set of patients sGaw is relatively more sensitive in assessing AHR by sGaw as compared to FEV1 than reported in the literature. This suggests that in this set of patients sGaw is relatively more sensitive in assessing AHR by sGaw as compared to FEV1 than reported in the literature. This suggests that in this set of patients sGaw is relatively more sensitive in assessing AHR by sGaw as compared to FEV1 than reported in the literature. This suggests that in this set of patients sGaw is relatively more sensitive in assessing AHR by sGaw as compared to FEV1 than reported in the literature.

The results of measurements taken on three consecutive days at the same time of the day were used to assess long time variability. Coefficients of variation (CV%) were calculated for oscillometric resistance parameters between 5 and 35 Hz.

Results: Coefficients of variation (CV%) for Resistance parameters at selected frequencies are shown in table 1.

Table 1. Coefficients of variation (in %) for spectral Resistance in a short-time (study A) and a long-time study (study B) in five conscious guinea pigs, means and standard deviations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Study A</th>
<th>Study B</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5</td>
<td>6.9 ± 3.6</td>
<td>11.5 ± 1.5</td>
</tr>
<tr>
<td>R10</td>
<td>7.1 ± 4.8</td>
<td>13.6 ± 2.8</td>
</tr>
<tr>
<td>R15</td>
<td>6.1 ± 2.1</td>
<td>10.5 ± 1.6</td>
</tr>
<tr>
<td>R20</td>
<td>5.8 ± 2.3</td>
<td>8.9 ± 2.0</td>
</tr>
<tr>
<td>R25</td>
<td>3.4 ± 2.3</td>
<td>5.5 ± 2.6</td>
</tr>
<tr>
<td>R30</td>
<td>2.7 ± 1.6</td>
<td>3.2 ± 2.0</td>
</tr>
<tr>
<td>R35</td>
<td>3.1 ± 1.0</td>
<td>2.3 ± 1.2</td>
</tr>
</tbody>
</table>

Conclusion: Putting awake guinea pigs in supine body position they get into a sleep-like condition. This was the preferred procedure to get well reproducible results of impedance spectra utilising impulse oscillometry in this species. The authors appreciate the financial support of the German Federal Ministry of Economics (Berlin Germany, registration number IW 070139).

P1192
Appropriateness of ATS/ERS recommended lung volume reference values for contemporary Australasian children
Maureen Verheugen1,2, Karla Logie1, Chris O’Dea1, Barbara Dixon4, Maureen Swanney4, Graham Hall5, 6, 7, 1 Respiratory Medicine, Princess Margaret Hospital, Perth, Australia; 2School of Paediatrics and Child Health, University of Western Australia, Perth, Australia; 3Respiratory Physiology, Christchurch Hospital, Christchurch, New Zealand; 4Paediatric Respiratory Physiology, Telethon Institute for Child Research, Perth, Australia; 5Respiratory Medicine, Sydney Children’s Hospital, Randwick, Australia

Introduction: There are only limited reference ranges for static lung volumes (LV) by Plethysmography (PLETH) or gas dilution (DIL) that encompass the paediatric age range. International recommendations suggest the data from Zaplatel (PLETH) and Cook (DIL) be used pending appropriate data using modern equipment and most recent guidelines.

Aim: To assess the suitability of these recommended reference ranges to contemporary healthy Australasian children.

Methods: Healthy subjects performed LV measurements by DIL or PLETH according to the 2005 ATS/ERS guidelines. Data was compared to recommended reference ranges and expressed as% predicted.

Results: Measurements were obtained in 244 subjects aged 5 to 19 years (120 male) of which 121 and 144 performed LV by DIL and PLETH, respectively.

<table>
<thead>
<tr>
<th>Lung Volume</th>
<th>DIL (Cook % pred)</th>
<th>PLETH (Zaplatel % pred)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>mean</td>
</tr>
<tr>
<td>FRC</td>
<td>121</td>
<td>93.9</td>
</tr>
<tr>
<td>TLC</td>
<td>117</td>
<td>97.2</td>
</tr>
<tr>
<td>RV</td>
<td>113</td>
<td>80.5</td>
</tr>
</tbody>
</table>

FRC and RV measured by both methods were significantly lower than published values (p < .001). Individuals below the LLN for TLC and outside the 95% CI for FRC and RV ranged from 4% for TLC by DIL to 55% for RV by PLETH.

Conclusions: Measured TLC agrees well with both PLETH and DIL reference values. FRC and RV by either method were significantly lower than predicted. A proportion of these healthy subjects would be considered to have LV outside the normal range. The recommended reference ranges for RV and FRC are inappropriate for use in Australasian children. New reference ranges using modern equipment are needed for this population.

P1191
Non-invasive measurement of respiratory impedance in conscious guinea pigs utilising impulse oscillometry
Carmen Claudia Klein1, Jens Thomas2, Norbert Mieskes1, Martin Hoffmann1, Hans-Juergen Smith3, 1Veterinary Clinic, fmb GmbH, Research Centre of Medical Technology and Biotechnology, Bad Langensalza, Germany; 2Medical Development, fmb GmbH, Research Centre of Medical Technology and Biotechnology, Bad Langensalza, Germany; 3Medical Development, Research in Respiratory Diagnostics, Berlin, Germany

Aim: Since rodents are often utilised as models in respiratory research, we investigated a newly constructed Impulse Oscillometry System (IOS) which was modified to allow non invasive measurements of respiratory impedance in conscious guinea pigs.

Material and methods: Five female guinea pigs (body weight: 592.2 ± 37.0 g) were included in the study. The animals were fixated manually in an extended supine position. a) Three consecutive IOS measurements, taken within a few minutes duration from each animal were used to evaluate short time variability. b) The results of measurements taken on three consecutive days at the same time of

P1193
Spacer device selection may not impact bronchodilator responsiveness (BDR) in asthmatic children
Jeanette Langley1, Claire Shackleton1, Sunalene Devadason3, Graham Hall4, 1Department of Respiratory Medicine, Princess Margaret Childrens Hospital, Perth, Western Australia, Australia; 2Clinical Sciences, Telethon Institute for Child Health Research, Perth, Western Australia, Australia; 3School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia

Assessment of spirometry before and after bronchodilators is used in the diagnosis and management of asthma. The impact of spacer device selection on clinical BDR is poorly understood. ATS guidelines state 400μg of salbutamol should be used for BDR testing. The aim of this study was to investigate if spacer selection has an effect on BDR in asthmatic children and at what salbutamol dose BDR reached significance.

Methods: This study compared spirometry and BDR with a disposable spacer (Lite Aire; Thayer Medical) and a multi-patient use spacer (Space Pod; Medical Economics (Berlin Germany, registration number IW 070139)).
Feasibility and reproducibility of pulmonary function tests in preschoolers

Danielle França1, Jocimar Martins 1, Filipe Athayde 1, Mercês Abreu 2, Gilda Araujo2, Paulo Camargos2, Raquel Britto2, Verônica Párraere2

1Graduation Program in Rehabilitation Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; 2Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; 3Department of Physical Therapies, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

Relevance: Preschoolers present particularities that reinforce the importance of assessing their pulmonary function; however few studies have focused on pulmonary function tests in this population.

Purpose: To assess the feasibility of assessing breathing pattern through inductive respiratory plethysmography, spirometry and peak cough flow (PCF) in healthy preschoolers, as well as the test-retest reproducibility of these tests.

Methods: It was assessed the breathing pattern (tidal volume-Vt, respiratory frequency-f, inspiratory time -Ti, inspiratory duty cycle-Ti/Ttot, mean respiratory rate-mRR) and rib cage motion-%RC), spirometry (forced vital capacity-FVC, forced expiratory volume in 1.0 second-FEV1, FEV1/FVC) and PCF of 38 healthy children aged 4.8±0.6 years. To evaluate the test-retest reproducibility, 10 children (leading to sample size calculation) were reassessed after three weeks. The study was approved by Ethics Committee. Feasibility was defined as the rate of success achieved by the children. Test-retest reproducibility was evaluated by paired t-test, considering significant p<0.05, and Intraclass Correlation Coefficient (ICC).

Results: The results showed a rate of success of 100% for breathing pattern, 84% for spirometry and 90% for PCF. Regarding the reproducibility, there were no significant differences between the variables of any test and it were observed the following ICC values: Vt=0.74, f=0.87, Ti=0.88; Ti/Ttot=0.95; FEV1=0.78, FEV1/FVC=0.75, PCF=0.85.

Conclusions: These results suggest high rate of success in performing the pulmonary function tests and good test-retest reproducibility in healthy preschoolers in good condition.

Diagnostic efficiency of FETA and its normalized indicators in spirometry positive BA, control group (71 non-smoking healthy subjects and 44 smokers). FETA values were normalized by C – chest circumference, H – height, M – body mass. Diagnostic thresholds were defined by ROC-analysis. Percentages of deviation from the norm, revealed by acoustic indicators in groups were evaluated.

P1198 Early lung function testing in infants with aortic arch anomalies identifies infants at risk for airway obstruction

Irina Pochekutova, Veronika Malavie, Vladimir Kornbaum. Acoustical Tomography, V.I. Wisses Pacific Oceanological Institute FEB RAS, Vladivostok, Russian Federation

Computer instrumentation (Kornbaum et al., 2008) provides a precise estimation of acoustic tracheal forced expiratory noises time (FETA). The purpose was an estimation of FETA's efficiency as diagnostic test of hidden bronchial obstruction (BO). The sample consisted of homogeneous groups: young male asthma (BA) patients as a BO model (71 patients with spirometry negative BA), control group (77 non-smoking healthy subjects and 44 smokers). FETA values were normalized by C – chest circumference, H – height, M – body mass. Diagnostic thresholds were defined by ROC-analysis. Percentages of deviation from the norm, revealed by acoustic indicators in groups were evaluated.

Diagnostic efficiency of FETA and its normalized indicators in positive BA is very close to efficiency of base-line spirometry. Moreover, bronchial obstruction is acoustically diagnosed almost in a half of patients with spirometry negative BA, whereas healthy are indistinguishable from young smokers. Thus, FETA seems to be a perspective for diagnostics of hidden bronchial obstruction, at least, in young male subjects. The study was supported by Far Eastern Branch of Russian Academy of Sciences grants No. 09-1-P2-08, No. 09-3-A06-231.
Patients: 29 patients with severe emphysema, Gold-IV (n=15): FEV1 23±pred (±4.9), Gold-III (n=9): FEV1 37±pred (±4.7) and Gold-II (n=5): FEV1 51±pred (±3.3) were tested. For Gold-IV IV was 239± (±55), TLCbox 136±pred (±18), IC/TLC-He 25± (±3) and 6MWt 340 (±62). For Gold-HE IV was 189±pred (±70), TLCbox 134±pred (±15), IC/TLC-He 36± (±11) and 6MWt 413 (±84).

Results: All patients tolerated the MPH very well. IC variability was 4.6± (±3.0), and 8.6± (±4.4) after MPH. VE reached 28.8±L/min (±12.6), calculated maximal VE (FEV1*37.5) was 34.5±L/min (±15.5). MPH frequency was 39.7± (±1.4). For the Gold-IV patient group the IC of 1.8±L (±0.47) decreased to 1.2±L (±0.42) after MPH with a ΔIC/IC of 34± (±12). In Gold-III IC decreased from 2.39L (±0.93), to 1.79L (±0.63) with a ΔIC/IC of 23± (±12). In the overall group ΔIC/IC correlated with TLC (r=0.45, p=0.03) and FEV1 (r=0.38, p=0.04).

Conclusion: Measuring DH is feasible using MPH, and can be used in the routine clinical setting. DH is significantly present in patients with COPD and increases with disease severity.

PI199

Impedance pneumography for assessment of a tidal breathing parameter in patients with airway obstruction

Ville-Pekka Seppälä1, Titi Kröbi2, Mika Kahunen 2, Jari Hyttinen 1, Jari Viik 1.
1 Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland.
2 Department of Clinical Physiology and Nuclear Medicine, Pirkanmaa Hospital District, Tampere, Finland.

Introduction: Short-term tidal breathing analysis (TBA) parameters, like tptf-te, have indicated changes in airway obstruction level in pediatric subjects, to whom conventional PFTs are inapplicable. Nocturnal TBA could provide new means for differential diagnosis and phenotyping of pediatric asthma. Recently, ambulatory impedance pneumography (IP) was reported to accurately estimate tptf-te in healthy subjects (Seppälä, V.-P. et al. Chest 2010; 138(4S):816A).

Methods: A simultaneous 3-minute tidal breathing recording of PNT and IP was conducted on 35 patients referred for spirometry in Tampere University Hospital. Reliable IP measurements were obtained from 27 subjects (age 18-65) having FEV1pred% mean 75% (range 26-103%) and BMI 24.8± (16-7.310). Agreement between methods was evaluated using the Bland-Altman analysis.

Results: The agreement between the methods was found very good with mean difference 0.00 and 95% CI -0.10, ±0.10. The agreement remained high throughout the encountered range of tptf-te values and it did not degrade in patients with more severe airway obstruction (n=15, FEV1pred% ≤60%).

Conclusion: IP was found suitable for assessing a tidal breathing parameter regardless of presence of an airway obstruction.

PI200

Sound propagation estimation in vivo by self-mixing interferometer

Ilaria Milese1, Pasquale Pompolio1, Norgia Michelet2, Raffaele Delia1.
1 Dipartimento di Bioingegneria, Politecnico di Milano, Milano, Italy.
2 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy.

Background: Measurement on excised lungs and mathematical models suggested that velocity of sonic waves in lung parenchyma is related on its density. Assessing acoustic transmission through the human respiratory system could provide a potential non-invasive way of monitoring alteration in lung density as those occurring during oedema and cystic fibrosis.

We have developed a low-cost, non-invasive device based on the laser self-mixing interferometer (S MI), to measure the high accuracy (360 nm) the displacement of targets within the field of any contact to the patient.

Methods: We analyzed 5 normal healthy subjects in supine position during quiet breathing while submitted to a sound pressure stimulus at their mouth at 100 Hz. Acceleration of two points of the chest wall (along the right second intercostal space AUR, in the middle of the clavicular line and the right anterior lower lobes on the anterior axillary line, ALR) has been simultaneously measured by commercial miniaturized accelerometers (ACC) and SI. Time delay between pressure at the mouth and each point of the chest wall AUR and ALR has been estimated by spectral methods.

Results: Good agreement was found between phase delay estimated by ACC and SI (r=0.999, p<0.001; Figure a). Measured ms were significantly increased from 2.3±0.45 with delays at AUR significantly smaller than ALR (r=0.985±0.2262 vs -1.941±0.2655, p=0.0002).

PI201

Detection of pregnancy in horses by breath analysis using differential ion mobility spectrometry (DMS)

Carmen Claudia Klein 1, Gunther Becher 2, Roman Purkhart 3, Werner Steinhauesser 4, Martin Hoffmann 5, Catherine Kisyordialj 6, Francesca Stefan 7, Antonio Terracciano 8, Carmen Claudia Klein 1, Gunther Becher 2, Roman Purkhart 3, Werner Steinhauesser 4, Martin Hoffmann 5, Catherine Kisyordialj 6, Francesca Stefan 7, Antonio Terracciano 8.
1 Veterinary Clinic, jbm GmbH, Research Centre of Medical Technology and Biotechnology, Bad Langensalza, Germany.
2 Medical Studies, BecherConsult GmbH, Bernau, Germany.
3 Medical Development, Graupner GmbH & Co. KG, Geyer, Germany.
4 Medical Development, Consulting CareFusion, Kirchheim, Germany.
5 Medical Development, jbm GmbH, Research Centre of Medical Technology and Biotechnology, Bad Langensalza, Germany.

Introduction: First results of pilot studies in human medicine, regarding the analysis of volatile organic breath compounds (VOC) for diagnostic purposes by means of spectrometrical techniques encouraged us to investigate, whether one of these techniques is useful in veterinary medicine.

Material and methods: A portable spectrometric system – Differential Ion Mobility Spectrometry (DMS) – was utilised in a first pilot study in equine species. Breath samples of fifteen pregnant and ten non-pregnant mares were taken in these first investigations. Clusters of VOC’s were evaluated using a special statistical algorithm and compared to serum levels of sexual hormones.

Results: It was possible to detect significant differences in clusters of exhaled peaks between pregnant and non-pregnant mares and discriminate between both groups with a statistical level of at least more than 95%. Calculating these clusters it is visible that certain VOC’s were increased (cluster 17, 30, 72) in pregnancy, new clusters, not detectable in non-pregnant occurred in breath of pregnant animals (Cluster 24), or visible clusters with reduced peaks in pregnancy (cluster 68) were found. Surprisingly it was possible to identify a cluster (cluster 3) of VOC in breath which correlates with the estrone sulphate level in serum in reverse. Discussion: Veterinarians do a lot of work detecting pregnancy in farm animals. It would be very useful to replace this physically hard job by another detection method, like the analysis of volatile organic compounds in breath. The authors appreciate the financial support of the German Federal Ministry of Economics (Berlin Germany, registration number VF 090056).

P1202

Non-invasive method for investigation of inhaled carbon monoxide (CO) distribution between intra- and extravascular compartments

Evgeny Babarskis1, Evgeny Stepanov2, Yury Shulgin3, Alexander Cherniak3, Zaurbek Aisanov1, Alexander Chuchalin1.
1Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland.
2Department of Bioengineering, Politecnico di Milano, Milano, Italy.
3Department of Biomedical Engineering, Bad Langensalza, Germany.

Background: Therapeutic potential of inhaled CO at low concentration was demonstrated in the treatment of some human diseases [Ryter S. et al. Am J Respir Cell Mol Biol 2009, 41: 251-260]. Basic parameters of CO-dosing were: CO concentration in inhaled air, time of administration and carboxyhemoglobin (COHb) concentration in blood. However therapeutic effect of CO is defined mainly by interaction with intracellular enzymes in extravascular tissues.

Aim: To develop method for determination of CO contents in extravascular compartment.

Methods: Balance equation of total CO mass administrated into body (MCOT, mmol) used for calculation of CO contents in extravascular compartment (MCOx, mmol). COHb concentration (COHb%) was defined by measuring of equilibrium CO concentration (Ceq, ppm) in exhaled air using high selective laser spectrophotometer. Total Hb mass (MHB, g) detected by preliminary administration of calculated CO amount (AMCO, mmol) as a result of single breath diffusion capacity test (Master Lab, Erich Jaeger) in 19 healthy volunteers (12 males and 7 females).

219s

Abstract printing supported by Chiesi. Visit Chiesi at Stand D.30
Results: ΔMco (a part of MCOt) varied from about 100 to 600 mkmol and Ceq deviations from baseline values (ΔCeq) were 28ppm. Following formula was found: MHb=8.95*ΔMco/ΔCeq. MHb was approximately proportional to body weight (Mbody, kg). The ratio R=MHb/Mbody was equal about 9.8 for males and 8.0 for females. After additional CO administration intravascular CO contents (MCOin, mkmol) is defined by formula: MCOin=0.11*ΔCeq*MHb, consequently MCOex=MCOt-MCOin.

Conclusion: Investigation of administrated CO distribution between compartments allow to optimize dosing regime and total CO dose value.