Thank you for viewing this presentation.

We would like to remind you that this material is the property of the author. It is provided to you by the ERS for your personal use only, as submitted by the author.

© 2015 by the author
Treatment for NTM: when how....and what next?

Pr Claire Andréjak
Respiratory and ICU Department
University hospital, Amiens, France
First step = To diagnose NTM disease

- One NTM positive sample ≠ NTM disease
- NTM are normally non-pathogenic for humans
- = environment
- ATS/IDSA Criteria for definition of cases

ATS/IDSA criteria, Griffith et al, AJRCCM 2007
Isolement ≠ Infection

- Clinical criteria
 - Pulmonary symptoms
- Radiological criteria
 - Nodular or cavitary pacities, multifocal bronchiectasis with multiple small nodules
- Bacteriological criteria
 - At least 2 positive sample with positive culture Or 1 bronchial wash
 - Or 1 bronchoalveolar lavage
 - Or positive biopsy with granuloma and one positive sputum
- Appropriate exclusion of others diagnosis

Griffith ATS/IDSA, AJRCCM 2007
Isolement ≠ Infection

- **Clinical criteria**
 - Pulmonary symptoms

- **Radiological criteria**
 - Nodular or cavitary pathology, multifocal bronchiectasis with multiple small nodules

- **Appropriate exclusion of others diagnosis**

* Griffith ATS/IDSA, AJRCCM 2007*
• Radiological criteria
 • Nodular or cavitary pacities, multifocal bronchiectasis with multiple small nodules

• Appropriate exclusion of other diagnosis

Isolement ≠ Infection

• Bacteriological criteria
 • At least 2 positive samples with positive culture or 1 bronchial wash or 1 bronchoalveolar lavage or positive biopsy with granuloma and one positive sputum

• Clinical criteria

• Pulmonary symptoms

• Radiological criteria

• Nodular or cavitary pacities, multifocal bronchiectasis with multiple small nodules

Griffith ATS/IDSA, AJRCCM 2007

Griffith ATS/IDSA, AJRCCM 2007
• Appropriate exclusion of others diagnosis

Griffith ATS/IDSA, AJRCCM 2007
Second step = to decide a treatment

- NTM disease is not synonymous of systematic treatment!
- Treatment according to severity of the disease
- Need of biomarkers to decide initiation treatment....
Third step: to choose the drugs

- More than 150 NTM....
- 4 main NTM specie or complex in Europe
 - *M. avium* complex
 - *M. xenopi*
 - *M. kansasii*
 - *M. abscessus* complex
- Multidrug therapy: at least 3 antibiotics
- 12 months after sputum conversion
- Clinical, radiological and bacteriological follow-up
- Drug susceptibility testing?
- Often a key drug for each main NTM
Fourth step: to decide to stop

- Endpoints for the management not officially defined:
 - Sputum conversion without relapse (for clinical trials)
 - Clinical and radiological improvement (for patient in clinical practice)
- No biomarkers available
- Classically = 12 months after sputum conversion...
 - Only expert opinion
- No current consensus for treatment duration
 - if there is no sputum conversion
 - Or if relapse under treatment
 - Despite clinical improvement
M. AVIUM COMPLEX
M. avium complex

• 3 diseases = 3 different managements

Hot tub Lung (Hypersensitivity disease)

+

=

No antibiotics
MAC exposure avoidance
Sometimes steroids
M. avium complex

- 3 diseases = 3 different managements

Lady Windermere Syndrome (nodular bronchiectatic disease)

Airway clearance ++++

Sometimes antibiotics
M. avium complex

- 3 diseases = 3 different managements

Cavitary disease

[Image of a cartoon character smoking a cigarette with cavities represented by bubbles.]

[Image of a CT scan showing cavities in the lungs.]

[Image of an electron micrograph of M. avium.]

[Image of a CT scan showing consolidation in the lungs.]

= Antibiotics
In vitro data

• MAC Susceptible to Macrolides
• Antibiotics MIC alone higher than maximum serum concentration
• Synergism between rifampicin and ethambutol
• No known breakpoints for drugs except for macrolides.
And in humans?

- Systematic review of studies of MAC treatment
- Classification according to the antibiotics combination received:
 - Treatment without rifampicin, without ethambutol and without macrolides =
 - Cure in 32% of cases
 - Treatment with rifampicin, and ethambutol but without macrolides
 - Cure in 38% of cases
 - Treatment with macrolides = (included macrolides monotherapy)
 - Cure in 59% of cases

Field, Chest 2004

- In many studies with clarithromycin containing regimen, sputum conversion rate = 70-80%

Tanaka, Am J Respir Crit Care Med 1999
Griffith, Clin Infect Dis 2000
And in humans?

- Systematic review of studies of MAC treatment
- Classification according to the antibiotics combination received:
 - Treatment without rifampicin, without ethambutol and without macrolides = Cure in 32% of cases
 - Treatment with rifampicin, and ethambutol but without macrolides = Cure in 38% of cases
 - Treatment with macrolides (including macrolides monotherapy) = Cure in 59% of cases

Field, Chest 2004

- Cure rates in studies with clarithromycin containing regimen, sputum conversion rate = 70-80%

Tanaka, Am J Respir Crit Care Med 1999
Griffith, Clin Infect Dis 2000
Macrolides= treatment
CORNERSTONE

• The only one drug with breakpoints and in vitro/in vivo correlation
 • Macrolides resistant- MAC= FAILURE
 • Susceptible strain (MIC 0,25-4 µg/ml) = SUCCESS

 Wallace, AJRCCM 1996
 Dautzenberg, Chest 1995
 Griffith, CID 1996
 Rubin, Chest 2004

• Clarithromycin vs Azithromycin ?
 • Efficacy : Clarithromycin > Azithromycin
 • Toxicity : Clarithromycin > Azithromycin
 • Drug Interactions Clarithromycin > Azithromycin (cytochrome P450)

 Dunne M et al. CID 2000
 Ward TT et al. CID 1998
 Brown BA et al. CID 1997
MAC: others drugs....

• Rifampicin vs Rifabutin?
 • Same efficacy
 • Drug toxicity Rifabutin > Rifampicin
 • Drug Interactions Rifampicin (cytochrome P450) > Rifabutin

• Fluoroquinolones?
 • In vitro: Moxifloxacin > Ciprofloxacin
 • Mice CLA > MXF

• Aminosides?
 • Only for the most severe cavitary forms
 • Maybe in the future by nebulization
 Kobashi Respir Med 2007

• In vitro synergism between amikacin and clofazimine
 Van Ingen J et al, AAC 2012

• Others with less evidence of efficacy and toxicity risk
 • clofazimine, cycloserine, ethionamide and capreomycin
 Koh AAC 2013
 Heifets AAC 1996
MAC: ATS guidelines

- ATS/IDSA 2007: Macrolides + Ethambutol + Rifamycin ± aminoglycosids
 - Clarithromycin 500 mg x 2 per day
 - Ethambutol 15 mg/kg /d
 - Rifabutin 300 mg /D or rifampicin 600 mg/d
- Others possibilities: Azithromycin 250 mg/d, Moxifloxacin 400 mg

ATS/IDSA, Griffith et al, Am J Respir Crit Care Med 2007
M. KANSASII
MK: In vitro data

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>MIC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifampicin</td>
<td>≤ 1</td>
</tr>
<tr>
<td>Rifabutin</td>
<td>≤ 0,5</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>1-4</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>≤ 5</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>≤ 0,25</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>2-8</td>
</tr>
<tr>
<td>Sulfamethoxazol</td>
<td>≤ 4</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>≤ 0,025</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>≤ 0,025</td>
</tr>
</tbody>
</table>

10 à 50 X MIC of MTb
MK: In vitro data

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>MIC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifampicin</td>
<td>≤ 1</td>
</tr>
<tr>
<td>Rifabutin</td>
<td>≤ 0,5</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>1-4</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>≤ 5</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>≤ 0,25</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>2-8</td>
</tr>
<tr>
<td>Sulfamethoxazol</td>
<td>≤ 4</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>≤ 0,025</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>≤ 0,025</td>
</tr>
</tbody>
</table>

Rifampicin resistant strain = in vivo Failure

10 à 50 X MIC of MTb ≤ 0,25

10 à 50 X MIC of MTb = Rifampicin resistant strain
MK: Treatment

1. ONE KEY DRUG = RIFAMPICIN
Why? No randomized studies...

Association WITHOUT rifampicin

- 6-months sputum conversion = 52-81%
- Short term relapse = 10%

 - Jenkins Conf of Chemotherapy 1960
 - Pezzia Rev Infect Dis 1981

Association WITH rifampicin

- 4-months sputum conversion = 100%
- Short term relapse = 1%

 - Pezzia Rev Infect Dis 1981
 - Ahn Rev Infect Dis 1981
 - Ahn Rev Infect Dis 1983
 - Banks, thorax 1983

Rifampicin resistant strain = Main failure factor
MK: Treatment

2. Rifampicin in combinaison with 2 others drugs
 To limit resistant strains selection
Treatment: companion drugs

• Ethambutol?
 • Possible synergism with rifampicin

 banks, Thorax 1984; BTS Thorax 1994

• Isoniazid?
 • INH+RIF+EMB vs RIF-EMB: no difference

 BTS, Thorax 1994
 • ATS Guidelines: INH+RIF+EMB

• Clarithromycin?
 • In vitro susceptibility
 • In vivo efficacy

 shitrit, chest 2006, griffith CID 2003

• Others drugs?
 • In vitro susceptibility: moxifloxacin, linezolid

 alcaide AAC 2004
So,

- Rifampicin = cornerstone of the *M. kansasii* treatment
- Same regimen
 - *Since 25 years*…
 - RMP+ EMB+ INH
 - 9 months ? Or 12 months after sputum conversion ?

 Jenkins, Thorax 1994

- In case of drug toxicity or resistant strain : clarithromycin or moxifloxacin
- Same outcome than TB when correct regimen
M. XENOPI
In vitro and in vivo data

- In vitro data: MIC higher than maximum serum concentration
- Lower MIC for clarithromycin and moxifloxacin
- No correlation between in vitro susceptibility and in vivo efficacy
- Murine model with intravenous infection
 - 9 different CLA containing regimen and 1 INH-RIF-EMB
 - CLA containing regimen >INH-RIF-EMB

Lounis AAC 1996

- Murine model with Nebulisation infection
 - EMB-RIF + MXF vs CLA and EMB-RIF-AMK +MXF vs CLA
 - No difference between CLA and MXF regimen
 - Superiority of AMK regimen

Andréjak JAC 2012
In vivo data: clinical studies

- Two randomized studies
 - 42 patients (20 and 22): INH-RMP-EMB vs RMP-EMB: no difference, mortality 69%
 Jenkins et al, Respiratory Med 2003
 - 34 patients (17 and 17): RMP-EMB-CLA vs RMP-EMB-CIPRO: no difference
 Jenkins et al, Thorax 2009

- One review (48 studies)
 - 188 patients with MX infection
 - Higher success rate in fluoroquinolones regimen
 - No difference between regimen with and without macrolides
 Varadi et Marras, Int J Tuberc Lung Dis 2009
Which treatment?

• ATS guidelines: CLA + RMP + EMB with MXF as alternative to one the drug
• Optimal treatment unknown
• CaMoMy study
 • Randomized study in France
 • CLA+EMB+RMP vs MXF+EMB+RMP
 • Main objective: 6 months sputum conversion rate in general
 • Secondary objectives: Comparison of the 2 regimens in term of efficacy, drug toxicity and outcome
 • Ongoing study
M. ABSCESSUS COMPLEX
Three subspecies

- *M. abscessus stricto sensu*
- *M. massiliense*
- *M. boletii*

- With differences of prognosis: better outcome with *M. Abscessus massiliense* in comparison to *M. abscessus stricto sensu*.
- With difference in susceptibility: inducible resistance with *M. abscessus stricto sensu*.
• In vitro:
 • Clarithromycin (erm gene),
 • Amikacin, β lactamin and penems : cefoxitin and imipenem
 • Linezolid et glycylcyclin
 • Clofazimine, ciprofloxacin

• 107 patients
 • 42 different combinaisons, a mean of 4,6 ATB with an IV duration treatment of 6 months
 • Sputum conversion in 71%, 48% without relapse

• One objective: to improve symptoms

• Often an induction phase with injectable drugs and oral drugs until smear conversion followed by a continuation phase with orally available drugs
 • Injectable drugs (IP): amikacin and cefoxitin or imipenem
 • Others drugs (given throughout the treatment): macrolides or clofazimine (for macrolides resistant strains), linezolid, tigecyclin/tetracyclin, eventually ciprofloxacin

Wallace, Antimicrob Agents Chemother 1991,
Nash, Antimicrob Agents Chemother. 2009,
Peloquin, Clin Infect Dis 2004,
Brown, Antimicrob Agents Chemother 1992,
Others

• *M. szulgai*
 • Clinical and radiological presentation close to *M. tuberculosis*
 • Susceptibility to antituberculous drugs
 • Susceptibility to macrolides and fluoroquinolones
 • Treatment based on drug susceptibility

• *M. malmoense*
 • Mainly in North Europe
 • No correlation between in vitro data and clinical success
 • Combinaison of rifampicin, ethambutol and clarithromycin
In conclusion (1)

- Treatment is long and difficult

- Three challenges
 - To decide to start a treatment
 - To decide with which drugs to treat
 - To decide to stop the treatment

- Need of discussion and coordination with physicians with experience usually in collaboration with national reference centers
In conclusion (2)

- **MAC**
 - Key drug = clarithromycin
 - Associated with EMB-RIF
 - Alternative in case of toxicity or resistant strain: amikacin, moxifloxacin, clofazimin

- **M. xenopi**:
 - Clarithromycin + ethambutol + rifampicin
 - Alternative: moxifloxacin, Amikacin

- **M. abscessus**:
 - Intensive phase: amikacin + imipenem or cefoxitin + Drugs of the continuation phase
 - Continuation phase (at least 3 drugs): clarithromycin (if macrolide susceptible), linezolid, ciprofloxacin, clofazimine, tigecycline/tetracycline

- **M. kansasii**
 - Key drug = rifampicin
 - Associated with ethambutol and isoniazid
 - Alternative: clarithromycin, moxifloxacin
Thanks for your attention