Introduction: Ethnicity may influence response to treatment of asthmatic patients, but this is controversial

Objectives: To determine if ethnicity influences the response to intramuscular steroid (eliminating adherence as an issue).

Methods: Children with severe therapy resistant asthma were admitted for assessment of steroid response. Asthma Control Test (ACT), exhaled nitric oxide (FENO), spirometry and sputum eosinophils were measured before and 4 weeks after intramuscular triamcinolone. Definitions of responsiveness: symptom response, ACT ≥ 20 or by ≥ 5; inflammatory response, if paired induced sputum samples available, sputum eosinophil count ≥ 2.5%, or if unavailable, FENO4↑ to ≥ 19.6 Z-score or by ≥ 15%. Non-responder, improvement in 0 domain; partial response, ≥ 1 domains; complete response, all 3 domains.

Results: 79 subjects were identified (Caucasian = 54, Black = 16, Asian = 5, Mixed Caucasian/Black = 4). There were no ethnic differences in the proportion of non-responders, partial responders and complete. After triamcinolone, there was a significant drop in mean FENO in Caucasians (49.6 to 26.3 ppb; p < 0.0001) but not in black (55.5 to 54.1 ppb; p = 0.87). More Black than Caucasian were FENO non-responders (86.7 vs. 45.3%; p < 0.05) and had exacerbations despite triamcinolone (61 vs. 17%; p < 0.05). There was no ethnic difference in ACT, FEV1 and sputum eosinophil responders.

Conclusions: Black asthmatic children were less likely to have a FENO response and had more exacerbations when compared to Caucasians. Further research is needed to understand the mechanisms of these differences.

3278

Inhaled corticosteroids and bone mineral density in children: A prospective 12-year follow-up study after early-life wheezing

Virpi Sidoroff1, Mari Hyvärinen1, Laisa Kriiger1, Heikki Kriiger1.

Matti Korppi2,4. Department of Paediatrics, School of Medicine, University of Eastern Finland and The National Graduate School of Clinical Investigation, Kuopio, Finland; 2Department of Paediatrics, Kuopio University Hospital, Kuopio, Finland; 3Department of Surgery, Kuopio University Hospital, Kuopio, Finland; 4Paediatric Research Centre, Tampere University and University Hospital, Tampere, Finland

Background: Inhaled corticosteroids (ICS) are the drugs of choice for asthma. Corticosteroids can have many detrimental effects on bone mineralization and growth, despite of inhaled administration.

Aims and objectives: To evaluate the association between the long-term use of ICS in childhood and bone mineral density (BMD) in teenagers.

Methods: Ninety-one children hospitalized for wheezing at age <24 months were prospectively followed until 12.2 (median) years of age. Data on ICS use were collected by interviewing the parents, supplemented by data from patient records. Cumulative doses, the duration of ICS use and systemic steroid doses were calculated. At the last check-up, BMD (BMDareal, g/cm2) was measured by dual energy X-ray absorptiometry (DXA) in 89 children, and apparent volumetric BMDs (aBMDvol, g/cm3) were calculated for the lumbar spine and femoral neck. Weight, height and pubertal stage were recorded.

Results: The regular use of ICS at age <6 years was associated with a lower BMDareal of the lumbar spine (mean 0.76, 95%CI 0.71-0.81 vs. 0.88, 0.84-0.92; p = 0.06). A lower BMDareal and aBMDvol of the femoral neck were associated with higher cumulative doses of ICS at 0-12.2 (median) years of age. Pearson’s correlation coefficients were r (r2) = -0.320 (0.10) for BMDareal and r (r2) = -0.291 (0.08) for aBMDvol. Age, sex and pubertal stage were significantly associated with both BMDareal and aBMDvol, but did not confound the results.

Conclusion: The use of ICS during childhood may be related to a decrease in BMD at early teenage, though the clinical manifestations of reduced BMD usually occur later in adulthood.

3279

Inhaled corticosteroids and risk of oropharyngeal colonization by streptococcus pneumoniae in children with asthma

Linjie Zhang1, Silvio Prietisch1, Ana Paula Mendes1, Andrea Grotti1, Gicelle Rocha1, Lillian Carrion2, Pedro Silva2.

1Maternal and Child Health, Faculty of Medicine, Federal University of Rio Grande, RS, Brazil; 2Laboratory of Microbiology, Faculty of Medicine, Federal University of Rio Grande, RS, Brazil

Introduction: Recent epidemiological studies have raised concerns about possible link between use of inhaled corticosteroids (ICS) and risk of pneumonia in patients with chronic obstructive pulmonary disease. This cross-sectional study aimed to investigate association between ICS and oropharyngeal colonization by Streptococcus pneumoniae (S. pneumoniae) among children (up to 18 years old) with asthma.

Methods: Two age-matched groups of patients were consecutively recruited: 1) Exposed group: children who had persistent asthma and were being treated with daily ICS for at least 30 days; 2) Non-exposed group: children who had asthma and were not being treated with ICS. Oropharyngeal specimens from the tonsillar area and posterior pharyngeal wall were collected.

Results: A total of 192 patients (96 in each group) were included in the study. In 585s
the exposed group, the mean daily dose of ICS was 400 mcg of beclomethasone or equivalent and the mean duration of treatment was 8.6 months. The prevalence of oropharyngeal colonization by S. pneumoniae was higher among children exposed to regular ICS as compared to those not exposed to regular ICS or among those not exposed to regular ICS (p < 0.001). After adjusting for potential confounders, regular use of ICS was an independent risk factor for oropharyngeal carriage of S. pneumoniae, with an adjusted prevalence ratio of 3.76 (95% confidence interval: 1.73-8.18, p=0.001).

Conclusions: Regular use of ICS is associated with an increased risk of having oropharyngeal colonization by S. pneumoniae in children with asthma. These findings highlight the need to further investigate the association between ICS therapy and risk of pneumonia among asthmatic children.

3280 Barriers to adherence to inhaled corticosteroids in a high adherent population of children with asthma

Tedd Mays, Susanne Ammon-Treiber, Benedikt Mothes, Markus Mezger, Ulrike Handegreuter, Detmar Hafel, Michael Kornann. Pediatrics Chair of Department of Post-Diploma Education, Russian State Medical University, Novosibirsk, Russian Federation

Background: The role of antiviral therapy in prevention of virus-induced bronchial asthma exacerbations in children is still unknown. Aim: To evaluate the efficacy and safety of ultralow doses of antibodies to interferon-γ (ULD AB IFN-γ) - IFN-γ ("Anafener") in treatment of patients with virus-induced phenotypes of bronchial asthma. Methods: A comparative, randomized, double-blind placebo-controlled trial of ULD AB IFN-γ (anafener for children) efficacy in prevention of acute respiratory viral infections (ARVI) and bronchial asthma exacerbations in a 100 children of 1-5 years with virus-induced phenotype of mild and moderate bronchial asthma. 52 patients of the treatment group obtained ULD AB IFN-γ (anafener) for children in prevent regime (1 pill 1 time per day for 3 months) and 48 patients of the comparison group took placebo in the same way. Results: 52 patients of the treatment group obtained ULD AB IFN-γ (anafener) for children in prevent regime (1 pill 1 time per day for 3 months) and 48 patients of the comparison group took placebo in the same way. Thereafter if hospitalized. Primary outcome measured was length of stay (LOS) and secondary outcomes were admission rate (AR) and clinical severity score (CS). Results: LOS was significantly shorter in the HS than in the NS group: median (range) 2 (0-6) days, versus 3 (0-5) days (P=0.027). AR was significantly lower in the HS than in the NS group: 62.2% versus 92%. CS improved significantly in both groups but did not reach significance between them. Conclusions: Using HS significantly shortens LOS and lowers AR in preschool children presenting with acute wheezing episode to the ED.

3281 Pulmonary immunoglobulin E levels and the response to anti-immunoglobulin E antibody therapy in paediatric severe therapy resistant asthma

Iman Al Darraj1,2, Alix Sjoukes1,2, Cara Bossley1,2, Timothy Oates1,2, Andrew Bush2,9, Sejal Saglam1,2, Respiratory Paediatrics, Royal Brompton Hospital, London, United Kingdom; 2National Heart and Lung Institute, Imperial College, London, United Kingdom

Background: Omalizumab is used in children with atopic, moderate to severe persistent asthma, but predictors of response are unknown. Broncho-alveolar lavage (BAL) IgE has been used to identify biopsies (EB) immunoglobulin E (IgE) has not been reported. It has been proposed that pulmonary IgE levels may predict response to therapy. Hypothesis: there is no relationship between serum and pulmonary IgE; and pulmonary IgE levels predict response to omalizumab.

Methods: We measured IgE levels in serum, induced sputum (IS), BAL and EB in 70 children (6-16 yr) with severe asthma. 15 underwent an omalizumab trial. IgE expression was determined in EB by immunobiochemistry and levels in IS and BAL were quantified using ELISA. Haematoxylin and eosin stained EB were used to quantify airway remodelling and eosinophilic inflammation was quantified using the congo red stain.

Results: 54 subjects had at least one evaluable biopsy. There was no relationship between total serum IgE and EB IgE+ cells, Spermann r=0.4739. Non-responders had higher serum IgE (failed trial: median 1582 IU/mL, range [1324 -11355] vs. successful trial: 386 IU/mL, range [105-2438], p =0.05). EB IgE+ cells did not predict omalizumab response. There was no association between EB IgE expression and airway remodelling or eosinophilic inflammation.

Conclusions: There was no relationship between serum and pulmonary IgE. Very high serum IgE levels predicted a failed omalizumab trial, but EB IgE expression was not useful in predicting a response. There was no relationship between airway remodelling, eosinophilic inflammation and EB IgE+ cells.

Funding: Asthma UK.

3282 Hypertonic saline and acute wheezing in pre-school children

Doni Alter1,3, Hanita Shal1, Bat-EI Bar4, Nir Fireman1, Daiana Tasher1, Ilan Durla1, Ami Ballin1, Avigdor Mandelberg1. Pediatric Pulmonary Unit, Wolfson Medical Centre, Sacker School of Medicine, Tel Aviv University, Holon, Israel; 2Pediatric Pulmonary Unit, Barzilai Medical Center, Ashkelon, The Faculty of Health Sciences, Ben Gurion University of the Negev; Ashkelon, Israel

Background: Most acute wheezing episodes in preschool children are associated with viral respiratory tract infections, most commonly rhinovirus. rhinovirus, like RSV, decreases extra-cellular ATP leading to airway surface liquid depletion. This, along with sub-mucosal edema, mucus plaques and inflammation cause failure of mucus clearance (MC). Such preschool children do not respond well to available treatments, including oral steroids. This calls for pro-MC and pro-hydration treatment like hypertonic saline.

Methods: Randomized, controlled, double-blind study. Forty one children (mean age 31.9±17.4 months, range 1-6 years) presented with wheezing to the emergency department (ED) were randomized after one albuterol inhalation to receive either 4 mL of Hypertonic Saline 5% (HS), (n=16) or 4 mL of Normal saline (NS), (n=25) both with 0.5 mL albuterol, twice every 20 minutes in the ED and four times a day thereafter if hospitalized. Primary outcome measured was length of stay (LOS) and secondary outcomes were admission rate (AR) and clinical severity score (CS). Results: LOS was significantly shorter in the HS than in the NS group: median (range) 2 (0-6) days, versus 3 (0-5) days (P=0.027). AR was significantly lower in the HS than in the NS group: 62.2% versus 92%. CS improved significantly in both groups but did not reach significance between them.

Hospitalization rate

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>HS, N=16</th>
<th>NS, N=25</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission rate (%)</td>
<td>10 (62.5)</td>
<td>23 (92)</td>
<td>0.05</td>
</tr>
<tr>
<td>Discharged home (%)</td>
<td>6 (38.1)</td>
<td>2 (8)</td>
<td>0.20</td>
</tr>
<tr>
<td>Length of stay, Median (range)</td>
<td>2 (0-5)</td>
<td>3 (0-6)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Conclusions: Using HS significantly shortens LOS and lowers AR in preschool children presenting with acute wheezing episode to the ED.

3283 The prevention of virus-induced exacerbation of bronchial asthma in children

Elena Kondrasina, Tatiana Elkhina, Maria Shintenig, Natalia Goulevskaia, Yulia Taturkina. Pediatrics Chair of Department of Post-Diploma Education, Russian State Medical University, Novosibirsk, Russian Federation

Background: The viral infection is the most common trigger of bronchial asthma. The role of antiviral therapy in prevention of virus-induced bronchial asthma exacerbations in children is still unknown. Aim: To evaluate the efficacy and safety of ultralow doses of antibodies to interferon-γ (ULD AB IFN-γ) - IFN-γ ("Anafener") in treatment of patients with virus-induced phenotypes of bronchial asthma.

Methods: A comparative, randomized, double-blind placebo-controlled trial of ULD AB IFN-γ (anafener for children) efficacy in prevention of acute respiratory viral infections (ARVI) and bronchial asthma exacerbations in a 100 children of 1-5 years with virus-induced phenotype of mild and moderate bronchial asthma. 52 patients of the treatment group obtained ULD AB IFN-γ (anafener) for children in prevent regime (1 pill 1 time per day for 3 months) and 48 patients of the comparison group took placebo in the same way. Results: During 3 month period the mean number of acute respiratory viral infections in treatment group was 0.6±0.14 and duration was 4.4±0.4 days; in comparison group children suffered from 1.32±0.18 ARVI episodes with mean duration 8.9±0.6 days. The percent of children with exacerbation of bronchial asthma induced by ARVI was 11.5% and 27% of children in treatment and comparison groups respectively. Side effects were not registered during the trial.

Conclusions: The preventative administration of ULD AB IFN-γ (anafener) affords to decrease the number of virus-induced bronchial asthma exacerbations, episodes and duration of acute respiratory viral infection. This fact considerably improve the quality of patients’ life and decrease economic costs for exacerbation treatment.

3284 Modified mRNA encoding Foxxp3 protects against allergic asthma in mice by rebalancing T helper cell responses through an IL-23/Th17-dependent mechanism

Laurer Maya, Susanne Ammon-Treiber, Benedikt Mothes, Markus Mezger, Ulrike Handegreuter, Detmar Hafel, Michael Kornann. Department of Pediatrics, University of Tübingen, Germany

Chemically modified mRNA has recently shown life-saving efficacy in a murine model of a rare, genetic lung disease, Scurfaced Protein-B deficiency, by inducing therapeutic levels of protein expression while circumventing the threat of genomic integration often associated with viral vectors (Kormann et al, Nat Biotechnol. 2011 Feb; 29(2):154-7). To translate this novel therapeutic tool into a high prevalence disease model, we investigated whether modified mRNA could restore immune balance and alleviate disease severity in Th2-driven allergic asthma. We show that intratracheal delivery of modified mRNA coding for the regulatory T cell factor Foxxp3 rebalanced pulmonary T helper cell responses, modulated innate immune response, and reduced allergic asthma severity in a mouse model of Th2-driven allergic asthma. A potential implication of these findings is that mRNA-based therapy may offer an innovative approach to the treatment of allergic asthma.
cell recruitment, and protected from allergen-induced tissue inflammation and goblet cell metaplasia. Protection against asthma was achieved following delivery of modified mRNA either before or after the onset of allergen challenge, demonstrating its potential as both a preventative and a therapeutic. Mechanistically, Foxp3 upregulation was critical in downregulating IL-23 and IL-17 production, and recombinant IL-23 or IL-17 expression during challenge abolished protection conferred by Foxp3 mRNA. Taken together, our results provide evidence that chemically modified Foxp3 mRNA protects against allergic asthma in vivo, which may pave the way for considering modified mRNA as a safe therapeutic tool for the treatment of asthma, allergy and beyond.