390. Treatment beyond inhalers: endoscopic lung volume reduction

P3526
Late-breaking abstract: Prevalence of emphysema heterogeneity measured with thoracic computed tomography soft in combination with collateral ventilation assessment to plan endoscopic volume reduction
Christophe Pison1, Adrien Jankowski2, Sébastien Quétant1, Marie Jondot1, Cécile Chérion1, Gilbert Ferretti1, Wahju Aniwidyaningsih2,3.
1Clinique de Pneumologie, CHU, Université J Fourier, Grenoble, France; 2Clinique d’Imagerie Médicale, CHU, Université J Fourier, Grenoble, France; 3Interventional Pulmonology, University Indonesia in Jakarta, Jakarta, Indonesia

Functional improvements after endoscopic volume reduction in severe emphysema were related to lobar heterogeneity and integrity of fissures in a post-hoc analysis of VENT data, NEJM 2010;363:1233. In 101 consecutive patients referred for endoscopic volume reduction, irrespective of CT findings, with FEV1 <50% pred. and in NHYA IV, we prospectively measured PFT’s, arterial gases, % of lobar destruction as defined by the % of volume < -950 Hounsfield unit with Myriam, Intrasense, Paris, France and in patients with heterogeneous disease collateral ventilation with lobar balloon Chartis, Pulmonx, USA. Patients, 75 males, were 59.1±11.4 yr old, FEV1 29.1±9.8% pred., FVC 66.8±22.1%, TLC 146.5±23.4%, PaO2 8.84±1.5, PaCO2 5.5±1.22 kPa, KCO 39.6±20.6% pred., % of destruction was 30±17 in left upper lobe, 24±18 left lower lobe, 35±21 right upper lobe, 24±20 right middle lobe and 26±20 right lower lobe. In patients with severe emphysema, lobar heterogeneity defined by at least 1 lobe with >50% destruction and a difference > 10% in destruction within lobes was found in 43 cases, 22 instances in left side, 31 right side, 15 both sides with no collateral ventilation in 83%. The first patients with no collateral ventilation treated with valves experienced major improvements in 80% in terms of FEV1, FVC and weight gain. We conclude that in patients with severe emphysema, heterogeneity was found in 43% of cases. From this single centre experience, endoscopic volume reduction seemed to result in meaningful improvements in 0.43x0.83x0.80 corresponding to 29% of cases. Funds from 2008-2010 innovative hospital grants.

P3527
6-month follow-up in patients with advanced upper lobe predominant heterogeneous emphysema treated with endobronchial lung sealant therapy
Felix Herth1, Ralf Eberhardt1, Arschang Valipour2, Franz Stanzel3, Reiner Bonnet4, Juergen Behr5, Charles Marquette6, Mordechai Kramer7.
1Pneumology and Critical Care, Thoraxklinik University of Heidelberg, Heidelberg, Germany; 2Respiratory and Critical Care Medicine, Otto Wagner Hospital, Vienna, Austria; 3Pneumology II and Endoscopy Service, Lungenklinik Hemer, Hemer, Germany; 4Pneumology, Zentralklinik Bad Berka GmbH, Bad Berka, Germany; 5Medizinischer Klinik III, University Bergmannsheil, Bochum, Germany; 6Service of Pneumology, Hospital Pasteur University of Nice, Nice, France; 7Pulmonary and Critical Care Medicine, Rubin Medical Center, Bellinson Hospital, Petah-Tikva, Israel

Objective(s): Responses to AerSeal® Emphysematous Lung Sealant System (ELS) therapy in patients with advanced upper lobe predominant heterogeneous (ULP) emphysema are summarized out to 6 months of follow-up.
Methods: 14 patients with ULP emphysema received ELS treatment in a multi-center study conducted at 8 sites across Europe and Israel. Ten (10) of these
Patients underwent a second treatment session after 12 weeks in the contralateral upper lobe to complete bilateral therapy. Pulmonary function, functional capacity, and quality of life were assessed at 3 and 6 months following treatment.

Results: Upper lobe ELS therapy in this cohort (8 male, age 63.6 ± 6.9 yrs) was associated with improved correlations in functional improvement, pulmonary function, and quality of life. Three (3) and 6 months improvements in FEV1 (0.8 ± 14.4; 33.1% vs. 20.3 ± 33.3%) were reported. Clinically significant improvements in spirometry were observed in 9 of 14 patients at 6 months follow-up. Physiological responses were best in those patients (n=10) who received bilateral upper lobe split dose therapy. No significant differences were seen in RV and RV/TLC.

Conclusions: ELS therapy in patients with advanced ULP emphysema improves lung function, functional capacity and quality of life out to at least 6 months. Improvements in spirometry following bilateral upper lobe therapy can be equivalent to those observed following upper lobe volume reduction surgery.

P3528 Physiological consequence of lower vs upper lobe lung volume reduction in patients with advanced emphysema
Edward Ingenito, Larry Tsai. Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States

Objectives: Lower lobe lung volume reduction in patients with advanced emphysema has been suggested to result in less benefit that upper lobe therapy. We present computer modeling results that explain these observations, and can help direct treatment site selection in patients undergoing lung volume reduction therapy.

Methods: A model considers alveoli as discrete units with an exponential pressure-volume relationship of the form (V(Ptp) = Vmax – A e-kPtp). Gravitational effects on transpulmonary pressure (Ptp), the extent of tissue destruction, airway closure effects, and extent of heterogeneity were incorporated as independent variables for predicting RV and RV/TLC.

Results: Gravitational effects on Ptp are the major determinant of regional RV and overall RV/TLC. In upper lobe heterogeneous emphysema, changes in Ptp from volume reduction distend the remaining alveoli at end exhalation. However, RV and RV/TLC are reduced due to a decrease in the total number of diseased alveoli following treatment. In lower lobe heterogeneous emphysema, volume reduction distends already stretched upper lobe alveoli attenuating treatment effects on gas trapping. This phenomenon was more pronounced in homogeneous disease. Potential benefits of lower lobe volume reduction could be completely negated by upper lobe alveolar distortion, resulting in no improvement, or even worsening of RV and RV/TLC despite alveolar resection.

Conclusions: Gravitational effects largely explain why lower lobe volume reduction therapy is less therapeutic than upper lobe therapy. In patients with homogeneous emphysema, lower lobe therapy can actually worsen gas trapping despite resection of diseased tissue.

P3529 Effect of fissure integrity on the efficacy of bronchoscopic lung volume reduction therapy using a peripheral airway tissue sealing agent in patients with advanced emphysema
Helge Magnusson1, Anne-Marie Kirsten1, Felix Herth2, Ralf Eberhardt3, Franz Stanzel4, Reiner Bonnet5, Juergen Behr6,3, Zentrum für Pneumologie und Thoraxchirurgie, Pulmonary Research Institution, Krankenhaus Grosshadern, Grosshadern, Germany; 2Pneumology and Critical Care, Thoraxklinik University of Heidelberg, Heidelberg, Germany; 3Pneumology and Critical Care Medicine, Charité Campus-Mitte, Berlin, Germany; 4Allergy Immunology & Respiratory Medicine, The Alfred Hospital, Melbourne, Australia; 5Pulmonary and Critical Care Medicine, University of Iowa, Iowa City, IA, United States; 6Pneumologie, Charité Campus Mitte, Berlin, Germany; Pulmonary Medicine, Thoraxklinik Heidelberg, Heidelberg, Germany; 7Allergy Immunology & Respiratory Medicine, The Alfred Hospital, Melbourne, Australia; 8Pulmonology, Charité Campus Mitte, Berlin, Germany; 9Pulmonary Medicine, University of Iowa, Iowa City, IA, United States; 10Pneumologie, Charité Campus Mitte, Berlin, Germany; 11Pneumologie, Charité Campus Mitte, Berlin, Germany; 12Pneumologie, Charité Campus Mitte, Berlin, Germany.

Objectives: Results from the VENT Study (Sciurba F et al, NEJM 2010) in ULP patients treated on the side of a complete fissure (n=12), lobar volume reduction was 323 mL, vs 406 ± 360 mL on the side of an incomplete fissure (n=15, p=0.04). We aimed to determine the effects of fissure integrity as measured by CT scanning in 27 patients (age 62.6 ± 10.5 yrs, 19 male) with advanced ULP emphysema before and after ELS therapy. Post-treatment changes in lobar and total lung volumes were correlated with fissure integrity and with physiological, functional and quality of life outcomes to out to 6 months.

Results: ELS therapy reduced lobar volumes independent of fissure integrity. In ULP patients treated on the side of a complete fissure (n=12), lobar volume reduction was 330 ± 323 mL, vs 406 ± 360 mL on the side of an incomplete fissure (n=15, p<0.04). Improvement in pulmonary function (Complete vs Incomplete ΔFEV1 = +8.5% vs 8.9%), functional capacity (ΔMRCRD = -1.1U vs 0.5U; ΔMRCD = +43.3 vs +41.0m), and quality of life (ΔSGRQ = -6.0U vs 7.9U) were reported in ULP patients with and without complete fissures although overall reductions in RV in RV/TLC (ΔRV/TLC = -6.7% vs -1.8%) were greater in those with complete fissures.

Conclusions: Fissure integrity had minimal impact on the overall response to endobronchial lung volume reduction therapy performed using ELS in patients with advanced ULP emphysema.

P3530 Efficacy of bronchoscopic thermal vapor ablation and lobar fissure completeness
Daniela Gompelmann1, Felix Herth2, Ralf Eberhardt3, Steven Kesten4, Klaus-Wolf Heussel1, 2Pneumologie and Critical Care Medicine, Thoraxklinik Heidelberg, Heidelberg, Germany; 3Clinical Department, Uptake Medical Corp, Tustin, CA, United States; 4Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik Heidelberg, Heidelberg, Germany

Background: Bronchoscopic thermal vapor ablation (BTVA) ablates emphysematous tissue through a localized inflammatory response followed by contractile fibrosis and atelectasis leading to permanent lung volume reduction that should not be influenced by collateral ventilation.

Objectives: To determine the correlation of clinical data from a trial of BTVA to pre-ablation tomography (CT) assessments.

Methods: Single arm study (n= 44) of patients with heterogeneous upper lobe predominant emphysema with FEV1 <45% predicted. Patients received BTVA to the RUL or LUL in a single setting. Primary efficacy outcomes: FEV1, and SGRQ at 6 months. Efficacy: lobar volume reduction (LoVR) from thin section multislice CT, spirometry, body plethysmography, 6MWD and mMRC dyspnea score. The treated lobar fissure was analyzed visually in non-enhanced pre-interventional CT. Incompleteness of small fissure, upper half of right large fissure, and three thirds of left large fissure were estimated in 5% increments and the relative amount of fissure incompleteness calculated. Pearson correlation coefficients were calculated and the model used to predict the association between fissure incompleteness and change in efficacy outcomes (baseline to 6 months).

Results: Mean age 62 years, 50% men, FEV1 0.85 L (31% predicted), SGRQ 59 units, 6MWD 300m. Calculated relevant fissure incompleteness was 13% (median) and 10% (63%) in patients (n=86%) who did or did not complete bilateral therapy. Correlation coefficients (r) for the association of incomplete fissures to outcomes are as follows: FEV1 0.17, LoVR -0.27, SGRQ -0.10, 6MWD 0, RV -0.18, RV/TLC -0.14. Conclusion: BTVA induced LoVR and improvements in clinical outcomes are independent of fissure integrity.

P3531 Associations of efficacy outcomes following bronchoscopic thermal vapor ablation (BTVA) for the treatment of heterogeneous emphysema
Peter Hopkins1, Felix J.F. Herth2, Gregory Snell3, Christian Wiem4, Mark H. Gottfried5, Anshagul Valipour6, Manfred Wagner7, Franz Stanzel8, John Egan9, Steven Kesten10, 11Lung Transplant Unit, Prince Charles Hospital, Chermside, Australia; 1Pneumologie and Critical Care Medicine, Thoraxklinik Heidelberg, Heidelberg, Germany; 2Allergy Immunology & Respiratory Medicine, The Alfred Hospital, Melbourne, Australia; 3Pulmonary and Critical Care Medicine, University of Iowa, Iowa City, IA, United States; 4Pneumologie, Charité Campus Mitte, Berlin, Germany; 5Pulmonary Medicine, Thoraxklinik Heidelberg, Heidelberg, Germany; 6Pneumologie, Charité Campus Mitte, Berlin, Germany; 7Pneumologie, Thoraxklinik Heidelberg, Heidelberg, Germany; 8Pneumologie, Thoraxklinik Heidelberg, Heidelberg, Germany; 9Pneumologie, Charité Campus Mitte, Berlin, Germany; 10Pneumologie, Charité Campus Mitte, Berlin, Germany; 11Pneumologie, Charité Campus Mitte, Berlin, Germany.

Objectives: To determine the correlations of improvements in lung function and CT analysis of lobar volume reduction (LoVR) to health outcomes following treatment of heterogeneous emphysema with BTVA.

Methods: Single-arm trial of BTVA in patients with upper lobe predominant emphysema. Patient criteria: FEV1 15% -45% predicted, age 40-75 yrs, RV>150%, TLC=100%, 6 minute walk distance (6MWD)>140 m, DLCO>20%, previous pulmonary rehabilitation. Primary efficacy endpoints: FEV1, and St. George’s Respiratory Questionnaire total score (SGRQ) at 6 months. Other endpoints: body plethysmography, mMRC dyspnea. 6MWD. Pearson correlation coefficients were calculated and the model used to predict the associations of changes from baseline to 6 months of physiologic measures and LoVR to health outcomes.
Results: 44 patients received BTV. Mean age: 63 years, men 50%, FEV1 0.86 (31% predicted), RV 237% predicted, DLCO 35% predicted, SGRQ 59 units, 6MWD 300 m, inHoRC 2.9.

Conclusion: Physiologic and CT LoVR outcomes correlate strongest with the BODE score and the perception of dyspnea. The variable degree of correlation among the health outcomes indicates the need to examine multiple efficacy variables in emphysema and reinforce that the measures are not redundant.

P3532
Efficiency of the endo-bronchial volum reduction treatment for heterogeneous lower lobe predominant emphysema

Tuthan Ece1, Ayen Eren1, Zaheya Bingöl1, 1Pulmonary Department, Istanbul University Istanbul Medical Faculty, Istanbul, Turkey; 2Pulmonary Department, Istanbul Bilim University, Istanbul, Turkey

Background: Patients with severe chronic obstructive pulmonary disease (COPD) have limited treatment options. Exercise capacity and health related quality of life (HRQOL) of these patients are affected by the progress of respiratory failure. Thus, there is a need for new treatments that can palliate. Endo-bronchial volum reduction treatment (EBVRT) which is a minimally invasive method has been come up. Endobronchial valves (EBV) that allow air to escape from a pulmonary lobe but not enter. It can induce a reduction in lobar volume that may thereby improve lung function and exercise tolerance in patients with advanced emphysema.

Method: To evaluate the safety and effectiveness of the EBVRT of lower lobe predominant heterogeneous emphysema. Functional capacity was evaluated with sixminute walk distance (6MWD). SGRQ were applied to evaluate the HRQOL.

Result: Five patients with heterogeneous lower lobe predominant emphysema (two left, three right lower lobes) were treated with EBV. Most of the patients were males (80%). The mean age was 65 years. Valves were placed into left lower lobe (n=2) and right lower lobes (n=3). Valves were placed in airways with 100% technical success. There were no procedure-related deaths and complications. At the third month after the treatment, there was an increase of 4.6% in the forced expiratory volume 1 second (FEV1) and 2.3% increase of 6MWD were observed. Also, there was a decrease of 2.3% in the SGRQ score was observed.

Conclusion: EBVRT for heterogeneous lower lobe predominant emphysema patients induced modest improvements in lung function, exercise tolerance, and HRQOL. EBVRT is a new safety method for the patients with severe COPD.

P3533
Multistage endobronchial valve treatment of emphysema

Amarildo Macedo1,2, Enio do Valle1, Silvia de Oliveira2, Sergio Pinto Ribeiro1,2, Hugo de Oliveira1,2. 1Emphysema Treatment Group, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil; 2Thoracic Surgery, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil

Of 59 patients with emphysema treated with endobronchial valves (EBV) at our institution, nine were submitted to multistage strategies with placement of additional valves at varying intervals to complement initial treatment or compensate for the natural decline associated with aging in this chronic disorder. All had severe emphysema with heterogeneity > 15% as measured by parenchymal density < -950HU. Three types of multistage strategies were used: bilateral (left/right) replacement (removal and reinsertion of valves), and progressive (nonlobar to lobar exclusion, upper/lower). Advantages of multistaging include protection from abrupt physiological changes and pneumothorax. Also, in the absence of clear clinical signs to predict response, multistaging allows a change in treatment approach, and clearly demonstrates the safety of EBVs.

Multistage endobronchial valve treatment of patients with severe emphysema

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>BODE</th>
<th>1st treatment interval (months)</th>
<th>2nd treatment interval (months)</th>
<th>Initial strategy</th>
<th>Final strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progressive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>B1, B1+2</td>
<td>29</td>
<td>L B1+2, B3, B4+5</td>
<td>BNLE LE</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>R B1</td>
<td>9</td>
<td>R B2, B3</td>
<td>BNLE LE</td>
</tr>
<tr>
<td>37</td>
<td>7</td>
<td>L B8</td>
<td>6</td>
<td>L B9</td>
<td>BNLE BNLE</td>
</tr>
<tr>
<td>45</td>
<td>4</td>
<td>R B1, B2</td>
<td>10</td>
<td>R B3, B6</td>
<td>BNLE LE Segment</td>
</tr>
<tr>
<td>Replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>R B1, B2, B3</td>
<td>40**</td>
<td>R B1, B2, B3</td>
<td>LE BNLE</td>
</tr>
<tr>
<td>Bilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>R B1, B2, B3</td>
<td>80</td>
<td>L B1+2, B3, B4+5</td>
<td>BLE BNLE</td>
</tr>
<tr>
<td>23</td>
<td>9</td>
<td>L B1+2, B3, B4+5</td>
<td>15</td>
<td>R B1, B2, B3</td>
<td>BLE BNLE</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>R B1, B2, B3</td>
<td>41</td>
<td>L B1+2, B3, B4+5</td>
<td>BLE BNLE</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>L B6, B8+9+10</td>
<td>12</td>
<td>R B8, R 9, B10+4+5</td>
<td>BLE BNLE</td>
</tr>
</tbody>
</table>

BNLE = Bilateral nonlobar exclusion; BLE = Bilateral lobar exclusion; LE = lobar exclusion; NLLE = nonlobar exclusion; R = right lobe; L = left lobe. (Celli RR et al. N Engl J Med 2004; 350:1005-1012. **Valves were completely removed for one month.

Multistage strategies should be considered in all valvular patients as part of their routine follow-up.

P3543
Management of severe COPD patients using bronchoscopic valve lung volume reduction: Preliminary results

Vladimir Parmish1, Michael Rassaukov1, Dzyuga Pazarov1, Zoya Kochneva2, Maria Filimonova3, 1Thoracic Division, National Research Centre of Surgery, Moscow, Russian Federation; 2Endoscopic Department, National Research Centre of Surgery, Moscow, Russian Federation; 3Functional Examinations, National Research Centre of Surgery, Moscow, Russian Federation

Background: Despite of a modern level of anesthesiology, reanimation and surgical techniques lethality after LVRS remains on range 2.5% and level of complications in some clinics reaches 20%.

Aim: To fulfil a technique of bronchoscopic valve lung volume reduction (BLVR) in management of COPD patients, to develop indications and contra-indications.

Materials and methods: 9 patients are undergone BLVR. Mean age was 56 y. All have severe dyspnoea from 3 up to 4 points on scale MRC, FEV1 - 25.6%, TLC -134±25%, RV - 287±34%, and distance in 6-min test - 245±45 m. Criteria of inclusion in BLVR program were similar to those at a LVRS. Procedures were performed under local anesthesia with intravenous potentiation. Intervention carried out on one lung in 8 cases. 1 patient undergone consecutive bilateral BLVR. The unilateral valve of manufacture of “Medlink” (Russia) was established in a bronchial tube of the most amased lobe or segmentary bronchial tubes of adjacent lobes for prevention of air bypass. The quantity of valves on one procedure varied from 1 up to 2. Average duration of procedure was 35±12 minutes.

Results: All patients were discharged. Average hospital period was 4 days. 2 patients had severe allergy bronchitis in site of valve. 2 patients had severe COPD exacerbation. 6 patients had marked reduction of dyspnoe, improving quality of life, increasing of physical tolerance, keeping up to 12 months after BLVR. including FEV1 - 30±3%, TLC - 102±3%, RV - 247±14%.

Conclusions: Preliminary outcomes suggest to efficacy, safety and expediency of BLVR in management of carefully selected severe COPD patients. We consider BLVR as a treatment option before LVRS and LT.

P3535
Endoscopic lung volume reduction (ELVR) with the “endobronchial Miyazawa valve” (EMV) in patients with severe emphysema, a prospective pilot study

Alban Lovis1,2, Inez Lemerontz1, Giovanni Galluccio1, 1Internal Medicine, CHUV, Lausanne, Switzerland; 2Center of Thoracic Endoscopy, Carlo Forlani Hospital, Roma, Italy

Introduction: The ELVR represent a new minimally invasive palliative option for the treatment of severe emphysema. The EMV is a new device with different characteristics compared to the others (a simple all in silicone structure, with a large opening, inexpensive, and without special delivery system) and is little studied. We believe this unidirectional valve is effective in reducing lung hyperinflation and improving lung function and dyspnoea of a subtype of emphysema patients. We report here the data at one month for the first two patients.

Method: Patients are affected from severe (FEV1 <40%) heterogeneous emphysema and major hyperinflation (RV >130%). The Outcomes are the adverse effects, lung functions, exercise capacity and quality of life. The EMVs have been inserted through a rigid bronchoscope in the target segmental or lobar bronchi supplying the most hyperinflated parts of the lung in order to achieve an unilateral treatment with lobar exclusion.

Results: Baseline to 1 month after insertion. The patients A and B have improved in quality of life (St George’s Respiratory Questionnaire). A 9.8 -18 points, pulmonary function (FEV1 0.51 to 0.62L and F0.9 to 1.4L, RV 4.49 to 2.53L and B5 to 5.2L. DLCO A 38 to 55%, B 25 to 33% of predicted value) and exercise capacity (6 min. walk test A+65m. B+120m.). No atelectasis was visible on radiological control but signs of air trapping were reduced.

Adverse effects: Two episodes of bronchospasm in the first patient well controlled by medical therapy, and none in the second.

Conclusion: Our preliminary encouraging experience describe a new tool for the therapy of selected emphysema patients.

P3536
Comparison between Chartist® pulmonary assessment system detection of collateral ventilation vs. corelith CT flow analysis in predicting atelectasis in emphysema patients treated with endobronchial valves

Daniela Gompelmann1, Ralf Eberhardt1, Dirk-Jan Slebos2, Joachim Ficker1, Frank Reichenberg1, Lars Ek1, Bernd Schulte1, Felix J.F. Herth1, 1Pneumologie, Thoraxklinik at University Hospital, Heidelberg, Germany; 2Pneumologie, University Medical Center, Groningen, Netherlands; 3Pneumologie, Klinikum Nurnberg, Nurnberg, Germany; 4Pneumologie, University Hospital Gießen, Germany; 5Pneumologie, University Hospital Lund, Sweden; 6Pneumologie, University Hospital, Halle, Germany

Introduction: Accuracy of the Chartist® Pulmonary Assessment System in identifying respondents after endobronchial Valve treatment is the subject of a recently concluded multi-center European Study. The Chartist system quantifies collateral ventilation (CV) by sealing a lung compartment and measuring its air pressure and flow. When the resistance value ≤ 10, the patient is “CV Negative”, when the resistance value ≤ 10, the patient is “CV Negative”. Fissure analysis

Abstract printing supported by Chiesi. Visit Chiesi at Stand D.30
prediction of LVR response is based on “completeness” or “incompleteness” of the target lobe fissure. In this study, the predictive value of the HRCT vs. Chartis assessment is compared.

Objective: To determine whether the accuracy of CV assessment is comparable to tissue analysis from HRCT in predicting clinically significant LVR following EBV treatment.

Methods: Baseline and 30-day follow-up HRCTs of EBV treated patients were evaluated by an independent, blinded core lab(s). A Chartis assessment was conducted prior to the baseline core lab reading. The baseline HRCT fissure results and the Chartis assessments were compared for a “true positive” prediction, and reviewed against the LVR in the treated lobe as measured by 30-day HRCT.

Results: Data for 31 patients is available to date. Analysis of up to 75 patients is expected for ERS. In 31 patients, Chartis and CT matched 24 times (77.4%). Chartis and CT did not match 7 times (22.6%).

Conclusion: Accuracy of the Chartis® System is comparable to Corelab review of HRCT, and may be used in lieu of fissure analysis to predict clinically meaningful LVR following EBV treatment.

P3537 Bronchoscopic assessment of collateral ventilation predicts outcome of endoscopic lung volume reduction with valves

Wolfgang Gersachar, Norbert Weber, Andreas Fertl, Karl Haussinger. Department of Pulmonology, Asklepia-Fuchkliniken Munchen-Gauting, Gauting, Germany

Background: Collateral Ventilation (CV) is a cause of failure of endoscopic lung volume reduction (ELVR) with endobronchial valves (EBV). The Chartis system (PulmonX, USA) measures CV in the target lobe of ELVR to predict outcome and aid patient selection.

Aims: To test this hypothesis we correlated Chartis values with outcome of ELVR with EBV.

Methods: In 15 patients with severe heterogeneous emphysema we measured CV with Chartis in the target lobe of ELVR and achieved complete lobar exclusion with Zephyr® EBV. We measured lung function, 6MWD, SGRQ and radiological outcome at baseline and one month.

Results: In 2 patients a valid Chartis signal was not obtained. In 3 patients showed high CV (Chartis value > 10 CV<ve>) and 10 patients low CV (Chartis value <10 CV<ve>). The CV<ve> group compared to the CV<ve> group showed significant improvement of obstruction (∆FEV1 0.23±0.13L vs. -0.05±0.18L; p=0.018) and hyperinflation (∆RV 1.00±0.62L vs. 0.02±0.78L; p=0.037). ∆6MWD was 58.6m vs. 43.3m (ns) and ∆SGRQ was -10.5 vs. -2.0 (ns). 10/15 patients had a response to ELVR (8 CV<ve>, 2 without valid Chartis signal). Atelectasis developed in 8/15 patients (CV<ve>, 2 without valid Chartis signal). Of the 5/15 non-responders (CV=ve) 3 were CV<ve> and 2 CV<ve>.

Conclusions: In our patient cohort Chartis adequately predicted outcome of ELVR with EBV in 11/15 patients. In 2 patients a valid Chartis measurement could not be obtained, although the Chartis reading was interpreted as CV<ve>. Despite these limitations, Chartis in our preliminary experience seems a valuable tool to select patients for ELVR with EBV.

P3538 One year follow-up of intrabronchial volume reduction in alpha-1-antitrypsin deficiency and severe emphysema

Gunnar Hillerstad, Stephanie Minud. Lung Medicine and Allergy, Karolinska Hospital, Stockholm, Sweden

Introduction: In patients with alpha-1-antitrypsin (AAT) deficiency, severe emphysema mainly localized to the lower lobes can develop. Volume reduction surgery (VRS) is not recommended in these patients.

Objectives: One-way valves in selected bronchi can reduce the size of hyperinflated lung areas, and we decided to make a pilot study of intra-bronchial volume reduction (IBVR) in patients with AAT deficiency and severe lower lobe disease.

Methods: In patients aged 40-80 years, with RV >150% and FEV1sec 15-45%.

Results of BODE index in the European multicenter study for the treatment of advanced emphysema with bronchial valves

Vincent Ninane1, Christian Geltner2, Michel Bezzia2, Jens Gottlieb3, Luis Seijo3, Mohamed Munavvar4, Antoni Rosell5, Steven Springmeyer6, Xavier Gonzalez7, Pulmonary Medicine, St. Pierre Hospital, Brussels, Belgium; 2Pulmonary Medicine, LKH Natters, Innsbruck, Austria; 3Pulmonary Medicine, Hospital Universitario de Navarra, Pamplona, Spain; 4Pulmonary Medicine, Royal Preston Hospital, Preston, United Kingdom; 5Pulmonary Medicine, Hospital Universitario de Bellvitge, Barcelona, Spain; 6Clinical Research, Spiration Inc., Redmond, United States

The BODE index evaluates the risk of mortality in patients with COPD. The VENT study (un-blinded, randomized with a medical control arm) reported that at 6 months, 40.6% of subjects treated with the Zephyr® (Pulmonx) valve in a single lobe, achieved at least a 1-point improvement in the BODE index as compared with only 18.6% of controls. We reported positive results of a blinded and randomized sham bronchoscopic controlled study evaluating the IBVR® Valve System (Spiration) treating both upper lobes in subjects with advanced emphysema but, without the goal of lobar atelectasis.

Methods: BODE was calculated at baseline and 3-months (blinded study period) in subjects in whom all necessary data was available.

Results: With the exception of 1 subject in the treatment group (TG), blinding was maintained. BODE improvement was -0.32±1.4 and -0.33±1.1 in the TG and CG respectively (p=NS).

Approximately half of the TG had improvements that may reflect treatment and positive study effects. In contrast with the not-blinded VENT control arm, 36% of the CG had improvements that could only be explained by positive study effects and/or placebo.

P3541 Results of BODE index in the European multicenter study for the treatment of advanced emphysema with bronchial valves

Luis Seijo1, Mohammed Munavvar2, Antoni Rosell3, Steven Springmeyer4, Xavier Gonzalez5, Pulmonary Medicine, Hospital Universitario de Navarra, Pamplona, Spain; 2Pulmonary Medicine, Royal Preston Hospital, Preston, United Kingdom; 3Pulmonary Medicine, Hospital Universitario de Bellvitge, Barcelona, Spain; 4Clinical Research, Spiration Inc., Redmond, United States

The BODE index evaluates the risk of mortality in patients with COPD. The VENT study (un-blinded, randomized with a medical control arm) reported that at 6 months, 40.6% of subjects treated with the Zephyr® (Pulmonx) valve in a single lobe, achieved at least a 1-point improvement in the BODE index as compared with only 18.6% of controls. We reported positive results of a blinded and randomized sham bronchoscopic controlled study evaluating the IBVR® Valve System (Spiration) treating both upper lobes in subjects with advanced emphysema but, without the goal of lobar atelectasis.

Methods: BODE was calculated at baseline and 3-months (blinded study period) in subjects in whom all necessary data was available.

Results: With the exception of 1 subject in the treatment group (TG), blinding was maintained. BODE improvement was -0.32±1.4 and -0.33±1.1 in the TG and CG respectively (p=NS).

Approximately half of the TG had improvements that may reflect treatment and positive study effects. In contrast with the not-blinded VENT control arm, 36% of the CG had improvements that could only be explained by positive study effects and/or placebo.
Conclusions: In this blinded study, there were BODE improvements for the TG and CG. Comparison with the VENT study suggests more BODE responders if there is a blinded CG arm. Well designed blinded and randomized studies are possible, may benefit patients in both groups and are needed to evaluate these therapies.

P3542
High resolution computed tomography (HRCT) measurements of lobar volume reduction associated with bronchoscopic thermal vapor ablation (BTV A) in patients with heterogeneous emphysema

1Ludwig-Boltzmann-Institute for COPD, Otto-Wagner-Hospital, Vienna, Austria; 2Pneumology and Critical Care Medicine, Thoneklinik Heidelberg, Heidelberg, Germany; 3Allergy Immunology & Respiratory Medicine, The Alfred Hospital, Melbourne, Australia; 4Lung Transplant Unit, Prince Charles Hospital, Chermside, Australia; 5Pulmonary & Critical Care Medicine, University of Iowa, Iowa City, United States; 6Pneumology, Charité Campus-Mitte, Berlin, Germany; 7Pulmonary Associates, John C. Lincoln Hospital, Phoenix, United States; 8Pneumologie, Klinikum Nürnberg, Nürnberg, Germany; 9Pneumologie, Zentrum für Pneumologie, Hemer, Germany; 10Advanced Lung Disease Program, Mater Misericordiae University Hospital, Dublin, Ireland; 11Clinical Department, Uptake Medical Corp., Tustin, United States; 12Pulmonary, Critical Care and Sleep Medicine, Caritas St. Elizabeth’s Medical Center, Boston, United States

Background: High resolution computed tomography (HRCT) may be used to assess the extent of lobar volume reduction associated with bronchoscopic lung volume reduction (LVR).

Objectives: Analysis of HRCT profiles of patients before and after BTV A in a single-arm trial of BTV A in patients with heterogeneous emphysema during a clinical trial.

Methods: HRCT scanning was used as a key inclusion criterion for a single-arm trial of BTV A in patients with heterogeneous emphysema. Patients were included if they had a CT determined heterogeneity index (HI) (HI = tissue to air ratio (TAR) lower lobe/upper lobe), FEV1 15%-45% predicted, age 40-75 years, RV >150%, TLC >100%, 6 minute walk distance (6MWD) >140 m, DLCO >20%, previous pulmonary rehabilitation.

Results: 44 patients (mean age 62yrs, FEV1 31% predicted, residual volume 237%, DLCO 35%) received unilateral upper lobe BTV A. HRCT assessed lobar volume reduction post BTV A was 48% after 3 months and 46% after 6 months. HRCT findings at baseline, 3 and 6 months according to the treated upper lobe were as follows:

<table>
<thead>
<tr>
<th>LUL (n=20)</th>
<th>RUL (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>3 months</td>
</tr>
<tr>
<td>Lung tissue (g)</td>
<td>154±35</td>
</tr>
<tr>
<td>Lung volume (ml)</td>
<td>159±4513</td>
</tr>
<tr>
<td>TAR (%)</td>
<td>9±1</td>
</tr>
</tbody>
</table>

*p<0.05 vs. baseline.

At 6 months, HI decreased from 1.67 to 0.99 (right lung) and 1.76 to 1.04 (left lung) (p<0.05).

Conclusion: HRCT analysis demonstrates significant lung volume reductions following BTV A. Reductions of tissue mass at 6 months are consistent with lung remodeling.