365. Asthma: basic science and clinical studies

P3260
Increased sputum IL-17 and neutrophils in asthmatic patients after climbing to extreme altitude
Sven Seys1, Marc Daenen2, Lieven Dupont3. Internal Medicine, Katholieke Universiteit Leuven, Leuven, Vlaams-Brabant, Belgium; Internal Medicine, Hospital of Oost-Limburg, Genk, Limburg, Belgium

Introduction: A group of 18 well-controlled asthmatic patients were evaluated before/during/after an expedition to the Aconcagua mountain (6900m).

Methods: Symptoms, spirometry and FeNO values were obtained before, during, and after the climb (up to 5600 m of altitude). Pre BD FEV1 was measured and cells from the lower airways were obtained by sputum induction before and after the expedition. mRNA was isolated, cDNA was prepared and RT-PCR was used to measure sputum mRNA quantities as described.

Results: During the expedition there was a decrease in FEV1 and FVC which reached a maximum at altitude of 4300 m. The pre BD FEV1 (% predicted) was significantly decreased when measured after the climbing expedition as compared to baseline measurements before the expedition (6.6%, p=0.004). FeNO values were not different between the different time points (p=0.17). Decreased asthma control was observed after the expedition as assessed by asthma control questionnaire (p=0.002). Sputum neutrophil percentages were significantly higher after expedition compared to before the expedition (p=0.04). Concomitantly, sputum IL-17 mRNA was increased after the expedition as compared to before expedition (p=0.007). A correlation of serum Clara Cell protein 16 and sputum IL-17mRNA was found (Spearman r=0.57, p=0.008).

Conclusion: Asthma patients have slightly worse lung function and asthma control after climbing to extreme altitude. Increased signs of neutrophilic inflammation were found in the airways as represented by higher sputum IL-17 mRNA and neutrophils.

P3261
Assessment of airway neutrophil activation in adult non-eosinophilic asthma
Collin Brooks1, Christine van Dalen1, Elizabeth Harding1, Ian Hermans2, Jeroen Douwes3. 1Centre for Public Health Research, Massey University, Wellington, New Zealand; 2Malaghan Institute of Medical Research, Victoria University, Wellington, New Zealand

Background: It is now evident that there are different pathophysiologies underlying different asthma phenotypes. The neutrophil has been proposed to be a principal cell type involved in non-eosinophilic asthma (NEA).

Aims: To investigate different aspects of neutrophil activation in NEA.

Methods: 24 adult asthmatics (9 eosinophilic asthma (EA)>2% sputum eosinophils), 15 NEA) and 18 healthy controls were recruited by advertisement and successfully underwent clinical assessment, spirometry and sputum induction. Sputum was analysed for neutrophil number (differential cell count), levels of neutrophil-associated soluble mediators (myeloperoxidase (MPO), IL-8 and MMP-9, by ELISA) and neutrophil expression of CD11b (flow cytometry).

Results: Only one asthmatic individual in our study was neutrophilic (61% neutrophils). EA was generally associated with a more severe clinical phenotype and poorer control (40% poorly controlled) than NEA (8%). There was no statistically significant difference in percentage of sputum neutrophils, neutrophil expression of CD11b, or sputum levels of MPO, IL-8 or MMP-9, between EA, NEA or control subjects. However, we observed that neutrophil percentage increased with age regardless of disease status (R2=0.71, p<0.0001), and this increase in neutrophils was associated with higher levels of IL-8 (R2=0.36, p=0.02), and MMP-9 (R2=0.55, p=0.0002).

Conclusions: Our results show no difference in neutrophil activation in NEA compared to either EA or healthy controls. They also support previous data showing an increase in neutrophil number with aging in both asthma and healthy controls, and suggest that age must be appropriately controlled for when defining a neutrophilic asthma phenotype.

P3262
Implication of interleukin-18 in airway remodelling in refractory asthma
Nikolleta Rovina1, Petros Bakakos1, Efrossini Dima2, George Hillas1. 1Laboratory of Functional Research of Respiratory System, Eastern Mediterranean University, Famagusta, Cyprus; 2Division of Respiratory Medicine, Second Affiliated Hospital, Chongming Medical University, Chongming, China

Interleukin (IL)-18 is suggested to contribute to the pathophysiology of asthma by modulating airway inflammation. However, the involvement of IL-18 on chronic airway inflammation and airway remodelling which are characterizing refractory asthma, has not been assessed. Aim of this study was to investigate IL-18 levels in refractory asthma and its relation to eosinophilic airway inflammation and remodelling.

IL-18 levels were measured in sputum supernatants obtained from mild asthmatic patients (33 smokers and 32 non-smokers), patients with refractory asthma (n=32) and healthy subjects (17 smokers and 17 non-smokers). Eosinophilic airway inflammation was assessed by measuring ECP eosinophil counts in sputum and AHR to methacholine. Airway remodelling was assessed by measuring IL-13, VEGF and transforming growth factor (TGF)-β1 in induced sputum.

Patients with refractory asthma and smoking asthmatics had significantly lower IL-18 levels in sputum compared to non smoking asthmatics (p=0.004 and p=0.049, respectively). No correlation was found between IL-18, ECP, eosinophils and AHR in patients with refractory asthma, although the correlations in mild smoking and non smoking asthmatics were documented (r=-0.636, p=0.026 for PD20meth, and r=-0.495, p=0.043 for FEV1% pred, in non smoking asthmatics, and r=0.765, p=0.006 for PD20meth and r=0.768, p<0.001, in smoking asthmatics). Significant correlations were found between IL-18 levels and (TGF)-β1, and IL-13 (r=0.803, p<0.001, and r=0.640, p=0.10, respectively).

These findings suggest that in refractory asthma IL-18 is possibly involved in chronic airway inflammation and airway remodelling through an eosinophil independent pathway.

P3263
Effect of adenosine receptors stimulation on generation of CD14+/CD16+CD209+ cells in patients with bronchial asthma
Ksenia Yuryeva1, Sergey Rychkov1, Nalia Bayakova2, Elena Konotopova1, Konstantin Goremykin1, Evgeny Kulikov1, Alexey Sazonov2, 1Laboratory of Molecular Biology of Central Research Laboratory, Siberian State Medical Univ., Tomsk, Russian Federation; 2Dept of Medicine, Vanderbilt University, Nashville, TN, United States

Aim: To investigate effects of adenosine receptors (AdoR’s) stimulation during initial time period of DC’s differentiation from peripheral blood (PB) monocytes in patients with bronchial asthma.

Methods: PB monocytes were received from 32 subjects diagnosed with BA and 19 healthy volunteers and cultured in DC differentiation medium in the absence/presence of AdoR’s agonist NECA (30μM) for 38 hours. Cell surface expression of CD14, CD16 and CD209 was analyzed by FACS.

Results: We have found that stimulation of AdoR’s results in higher yield of CD14+/CD16+CD209+ cells in patients with BA compared to healthy volunteers (8.22% ±0.83% vs 2.4% ±0.23%, p=0.05). According to number of CD14+/CD16+CD209+ cells generated after treatment with NECA we documented the presence of two groups of individuals characterized by high and low response to AdoR’s stimulation. We identified that 50% of individuals with BA and 16% of healthy volunteers demonstrated high responsiveness to NECA.

Conclusion: Our study indicates the role of adenosine regulation of DC’s differentiation in BA. The heterogeneity in responses to AdoR’s stimulation may be used as a basis for individual BA treatment development.

P3264
Role of target-cells sensitivity to corticosteroids in cold bronchial hyperresponsiveness development
Julit M. Pereliman1, Alexey B. Parogov2, Elena V. Uskhalova2, Xiangdong Zhou3, Qili Li3, Victor P. Kolosov2. 11st Department of Pulmonary Medicine, “Atticon” Hospital, Athens, Greece; 2Laboratory of Functional Research of Respiratory System, Eastern Mediterranean University, Famagusta, Cyprus; 3Division of Respiratory Medicine, Second Affiliated Hospital, Chongming Medical University, Chongming, China

Background: There are data concerning the correlation of intracellular absorb-
tion of corticosteroids and cold bronchial hyperresponsiveness (CBH) in patients with bronchial asthma (BA).

Aim: To define the role of target-cells sensitivity to corticosteroids in cold bronchial hyperresponsiveness development in BA.

Methods: 44 patients with BA were recruited. The mean level of asthma control was 16.8±0.1 points (Asthma Control Test). The absorption of cortisol by blood lymphocytes (ALC) in the standard test “in vitro” with hydrocortisone before 3-minute isocapnic cold air (<20°C) hyperventilation (ICH) was studied. CBH was diagnosed by the drop of FEV1, after ICH (ΔFEV1)≥10% from initial value.

Results: The two groups were divided into two: the 1st (28 persons) was with constant values of hormone absorption by lymphocytes, the 2nd (16 persons) had lower values. ALC values were (0.701±0.054×10^11 mg/kg/1000 cells and (0.527±0.038×10^11 mg/kg/1000 cells, respectively (p<0.01). CBH was found out in 22 patients of the 1st group and in 6 patients of the 2nd one (χ2=7.42; p<0.01).

In the 1st group there was the biggest part of patients (87%) with a high degree of CBH (ΔFEV1>18.5%) and a mean level of CBH (ΔFEV1) within the range of 14.2±18.6%. The 2nd group had only low values of CBH (ΔFEV1), within the range of 10.0-14.1%. The risk of high degree of CBH in patients of the 2nd group was three times higher than in the 1st group: chances ratio was 3.45; 95% confidence interval (CI) = 1.0-14.1%.

Conclusion: CBH in BA patients is associated with the decrease of transmembrane penetration of glucocorticoids into target cells.

P3265

LSC 2011 Abstract: Effect of inhaled apocynin on reactive oxygen species concentrations in exhaled breath condensate of asthmatics.

Jolanta Ścichulcza, Dariusz Wozniak, Jan Pawłucki.

Department of Immunology, Medical University of Lodz, Lodz, PL Department of Clinical Physiology, Medical University of Lodz, Lodz, PL Department of Pneumology, National Institute for Tuberculosis and Lung Diseases, Lublin, PL

Reactive oxygen species (ROS) have a strong impact on homeostasis and are thought to play an important role in inflammation in asthma. The sources of oxidative stress in patients with chronic inflammatory lung diseases derive mainly from increased amounts of ROS and reactive nitrogen species (NOS), generated by airway cells. Apocynin is and agent which blocks NADPH oxidase - the enzyme, responsible for ROS production. The anti-inflammatory activity of apocynin has been shown in a variety of experimental models of inflammation. Therefore, considering apocynin activities, we investigated the effect of nebulized apocynin in 14 nonsmoking asthmatics, in placebo-controlled, crossover design study. Effects of apocynin have been checked 30, 60 and 120 minutes after nebulization of exhaled breath condensate (EBC) samples. Additionally, we investigated safety parameters.

Apocynin significantly decreased H2O2 concentration in EBC in comparison to placebo after 60 and 120 min. (0.29 µM vs. 0.44 µM, and 0.47 µM vs. 0.4 µ M, respectively). Moreover, apocynin significantly reduced NO2 concentration 30 and 60 min after nebulization (2.75 µM vs. 4.65 µM, and 2.5 µM vs. 4.05 µM, respectively) in comparison to placebo. Finally, apocynin caused a significant decrease of NO2 concentration in EBC after 60 and 120 min after administration, comparing to placebo (5.34 µM vs. 8.2 µM (60 min), and 5.3 µM vs 8 µM (120 min) respectively). No influence of apocynin on safety parameters, and no adverse effects has been observed.

These data suggest that using apocynin might be a promising solution to alleviate inflammatory process, and probably, symptoms of inflammatory diseases.

P3266

Quantitative proteomics on bronchial biopsies from asthma and COPD: Effects of budesonide treatment.

Serena O’Neil1, Brigita Sitkauskienė2, Agne Babusyte3, Algirda Krisiukeniene2, Linda Ekerljung1, Serena O’Neil1, Brigita Sitkauskienė2, Agne Babusyte3, Algirda Krisiukeniene2, Gert Folkerts1, Johans Garsen1, Division of Pharmacology, UPS, Utrecht University, Utrecht, NL Immunology, Danone Research, Wageningen, NL

Allergic disorders, such as asthma, are symptomatic reactions of the immune system to common and innocuous environmental antigens. These inflammatory disorders are caused by aberrant immune regulation in which various signalling receptors play a role. Perturbed recognition receptors linking innate and adaptive immune responses are one of the key components of the innate immune system. The function of these receptors has been linked with susceptibility towards the development of allergic diseases, including asthma, making the TLRs and NLRs good targets for novel effective therapies of allergic diseases. In this study the mRNA expression levels of different TLRs and NLRs in the lung tissue in mild and severe mouse models of allergic asthma were measured by q-PCR. In addition, broncho-alveolar lavage fluid (BALF) was collected and cells numbers analysed.

In the mild and severe asthma models different TLR and NLR mRNA expression profiles are observed. In the severe asthma model, a higher cell influx in BALF is seen. Moreover, a significant correlation is found between the mRNA expression of TLR3, TLR6 and TLR9 and the total cell number in the BALF.

P3269

Mesenchymal stem cells down-regulate inflammation but not airway hyperresponsiveness in experimental asthma

Leticia Antonio Martins-Pardilho1,2, Isabel Mirones-Aguilar1,2, Oscar Amor-Caro1,2, Rebeca Fraga-Irusi1,2,3, Beatriz Leiva-Costa4, Isabel Cubillo-Moreno5, Miguel Angel Rodriguez-Milla6, Javier Garcia-Castro7, David Ramos-Barbón1,3,1,3

1 Respiratory Research Unit, Hospital Universitario de Cruces A Coruña/NBIC, A Coruña, Spain; 2Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain; 3Respiratory Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

Introduction: Mesenchymal stem cells (MSCs) have immunomodulatory properties. MSCs may have a potential to down-regulate airway inflammation in asthma, but may as well serve as building blocks for unwanted airway remodeling. Here we tested the effect of MSCs in experimental asthma.

580s

Abstract printing supported by Chiesi. Visit Chiesi at Stand D.30
Methods: MSCs from peritoneal adipose tissue of donor mice were transduced to express green fluorescent protein (GFP). Experimental asthma was induced in recipient mice by repeated intranasal instillation of house dust mite (HDM) extract. These mice subsequently received 3×10^4 MSCs intravenously (HDM-MSC group). Control groups consisted of HDM-instilled mice that received MSC vehicle (HDM-NoMSC group), or PBS-instilled mice that received MSCs (PBS-MSC group). Airway responsiveness to methacholine, bronchoalveolar lavage (BAL), leukocytes and the presence of GFP+ MSCs in the lung were analyzed 3 days after the MSC or vehicle injection.

Results: HDM-MSC mice showed: (i) unchanged airway hyperresponsiveness to methacholine compared with HDM-NoMSC mice; (ii) BAL leukocyte counts decreased to the PBS-MSC group baseline; and (iii) GFP+ MSCs present in lungs of these mice were also detected by intranasal administration of house dust mite (HDM-MSC group).

Conclusion: In experimental asthma, a single MSC infusion effectively decreases airway inflammation but leaves airway hyperresponsiveness untouched. MSCs infused for therapeutic aims may not home to the airway wall. Whether clinically relevant effects can be achieved remains to be determined.

Funded by the Fondo de Investigación Sanitaria of Spain & European Regional Development Fund, a GlaxoSmithKline Collaborative Research Trial and SEPAR.

P3270

Asthma is an inflammatory disease characterized by airway hyperactivity, inflammation, and remodeling. The role of alveolar macrophages (AM) in the pathogenesis of asthma is still not clearly elucidated. The aim of the study is to determine the origin of these proliferative cells in the chronic asthma model.

BM-chimera mice were successfully constructed, with no detectable radioactivity at 3 days after BM transplantation. The total number of cells that produced TGF-β1 and IL-10 in BAL were similar to controls in all groups. In GP that did not dAOAC, the number of inducible regulatory T cells (tTregs) that produced TGF-β1 was similar to controls in all groups, while iTregs that produced TGF-β1 were increased only in the group of GP that did not dAOAC on the sixth challenge. We suggest that iTregs might play an important role in suppressing the development of hyperresponsiveness in this model.

P3271

Upregulated expression of interleukin-33 and alternative activation of macrophages in a model of an acute exacerbation of asthma

Rakesh Kumar, Melissa Scott, Rylie Keogh, Cristan Herbert, Jessica Siegle, Angela Batista Gomes Santos, Milton Arruda Martins, Marisa Dolhnikoff

The role of alveolar macrophages (AM) in the pathogenesis of an acute exacerbation of asthma is poorly understood. In a clinically relevant mouse model, we have shown that AM are activated to secrete pro-inflammatory cytokines, and that these activated AM can stimulate primed CD4+ T cells to secrete Th2 cytokines (Am J Respir Crit Care Med 2007, 176:49-62). In contrast to controls in all groups, while iTregs that produced TGF-β1 were similar to controls in all groups, while iTregs that produced TGF-β1 were increased only in the group of GP that did not dAOAC on the sixth challenge. We suggest that iTregs might play an important role in suppressing the development of hyperresponsiveness in this model.

The total number of cells that produced TGF-β1 and IL-10 in BAL were similar to controls in all groups. In GP that did not dAOAC, the number of inducible regulatory T cells (tTregs) that produced TGF-β1 was similar to controls in all groups, while iTregs that produced TGF-β1 increased only in the group of GP that did not dAOAC on the sixth challenge. We suggest that iTregs might play an important role in suppressing the development of hyperresponsiveness in this model.

The total number of cells that produced TGF-β1 and IL-10 in BAL were similar to controls in all groups. In GP that did not dAOAC, the number of inducible regulatory T cells (tTregs) that produced TGF-β1 was similar to controls in all groups, while iTregs that produced TGF-β1 were increased only in the group of GP that did not dAOAC on the sixth challenge. We suggest that iTregs might play an important role in suppressing the development of hyperresponsiveness in this model.

P3272

Natural occurring CD4+ CD25+ FoxP3+ Treg cells are related to the absence of antigen induced airway obstruction in a guinea pig asthma model

Patricia Ramos-Ramírez1, Olivia Telles-Jimenez2, Erasmo Martínez-Cordero3, Eduardo García-Zepeda3, Fernando Gutiérrez-Aguilar1, Blanca Bazan-Pékins1

1Pneumology, University Hospital Freiburg, Freiburg, Freiburg, Sao Paulo, Germany; 2Physical Therapy (LIM 34), University of Sao Paulo, Sao Paulo, Brazil; 3Pathology (LIM 59), University of Sao Paulo, Sao Paulo, Brazil; 4Pathology (LIM 05), University of Sao Paulo, Sao Paulo, Brazil

Asthma is an inflammatory disease characterized by airway hyperactivity, inflammation, and remodeling. The role of alveolar macrophages (AM) in the pathogenesis of asthma is still not clearly elucidated. The aim of the study is to examine whether BM-derived adult stem cells are responsible for the massive proliferative cells in asthmatic airway remodeling.

Naked: Adult mice were durably engrafted with BM isolated from GFP transgenic mice. Using GFP BM-chimera mice, OV-A-induced chronic asthma model.

BM-chimera mice were successfully constructed, with no detectable radioactivity at 3 days after BM transplantation. The total number of cells that produced TGF-β1 and IL-10 in BAL were similar to controls in all groups. In GP that did not dAOAC, the number of inducible regulatory T cells (tTregs) that produced TGF-β1 was similar to controls in all groups, while iTregs that produced TGF-β1 increased only in the group of GP that did not dAOAC on the sixth challenge. We suggest that iTregs might play an important role in suppressing the development of hyperresponsiveness in this model.

We developed a model of airway obstruction-induced by antigenic challenge in guinea pig (GP) to elucidate the potential role of Tregs. In our model, the sensitized GP are intermittently challenged with the antigen (ovalbumin, OA; applied every 10 days). We found two groups of GP ones that showed dAOAC and ones that did not. Then, we evaluated the antigen-induced airway obstruction and hyperresponsiveness (HR) to histamine and identified the population of Tregs in the lungs of OV-A-sensitized/challenged mice.

Our group of GP that did not dAOAC showed a transient response and developed of HR at third and sixth challenges. In GP that did dAOAC HR was observed at third but not at sixth challenge. The total number of cells that produced TGF-β1 and IL-10 in BAL were similar to controls in all groups. In GP that dAOAC, CD4+CD25+Foxp3+ T cells (nTreg) numbers were reduced in BAL in comparison to controls and GP that did not dAOAC. The number of inducible regulatory T cells (tTreg) that produced TGF-β1 was similar to controls in all groups, while iTregs that produced TGF-β1 increased only in the group of GP that did not dAOAC on the sixth challenge. We suggest that iTregs might play an important role in suppressing the development of hyperresponsiveness in this model.

P3273

Overproduction of IL-18 in the lungs induces IL-13 and IFN-γ producing CD4+ T cell in the lungs, and results in airway hyperresponsiveness in Balb/c mice

Masanori Sawada, Tomoaki Hoshino, Yuki Sakazaki, Hanako Oda, Hai-Feng Ou-Yang, Chang-Gui Wu

Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China

We developed a model of airway obstruction-induced by antigenic challenge in guinea pig (GP) to elucidate the potential role of Tregs. In our model, the sensitized GP are intermittently challenged with the antigen (ovalbumin, OA; applied every 10 days). We found two groups of GP ones that showed dAOAC and ones that did not. Then, we evaluated the antigen-induced airway obstruction and hyperresponsiveness (HR) to histamine and identified the population of Tregs in the lungs of OV-A-sensitized/challenged mice.

BM-chimera mice were successfully constructed, with no detectable radioactivity at 3 days after BM transplantation. The total number of cells that produced TGF-β1 and IL-10 in BAL were similar to controls in all groups. In GP that did not dAOAC, the number of inducible regulatory T cells (tTregs) that produced TGF-β1 was similar to controls in all groups, while iTregs that produced TGF-β1 increased only in the group of GP that did not dAOAC on the sixth challenge. We suggest that iTregs might play an important role in suppressing the development of hyperresponsiveness in this model.

We developed a model of airway obstruction-induced by antigenic challenge in guinea pig (GP) to elucidate the potential role of Tregs. In our model, the sensitized GP are intermittently challenged with the antigen (ovalbumin, OA; applied every 10 days). We found two groups of GP ones that showed dAOAC and ones that did not. Then, we evaluated the antigen-induced airway obstruction and hyperresponsiveness (HR) to histamine and identified the population of Tregs in the lungs of OV-A-sensitized/challenged mice.

BM-chimera mice were successfully constructed, with no detectable radioactivity at 3 days after BM transplantation. The total number of cells that produced TGF-β1 and IL-10 in BAL were similar to controls in all groups. In GP that did not dAOAC, the number of inducible regulatory T cells (tTregs) that produced TGF-β1 was similar to controls in all groups, while iTregs that produced TGF-β1 increased only in the group of GP that did not dAOAC on the sixth challenge. We suggest that iTregs might play an important role in suppressing the development of hyperresponsiveness in this model.

We developed a model of airway obstruction-induced by antigenic challenge in guinea pig (GP) to elucidate the potential role of Tregs. In our model, the sensitized GP are intermittently challenged with the antigen (ovalbumin, OA; applied every 10 days). We found two groups of GP ones that showed dAOAC and ones that did not. Then, we evaluated the antigen-induced airway obstruction and hyperresponsiveness (HR) to histamine and identified the population of Tregs in the lungs of OV-A-sensitized/challenged mice.

Our group of GP that did not dAOAC showed a transient response and developed of HR at third and sixth challenges. In GP that did dAOAC HR was observed at third but not at sixth challenge. The total number of cells that produced TGF-β1 and IL-10 in BAL were similar to controls in all groups. In GP that dAOAC, CD4+CD25+Foxp3+ T cells (nTreg) numbers were reduced in BAL in comparison to controls and GP that did not dAOAC. The number of inducible regulatory T cells (tTreg) that produced TGF-β1 was similar to controls in all groups, while iTregs that produced TGF-β1 increased only in the group of GP that did not dAOAC on the sixth challenge. We suggest that iTregs might play an important role in suppressing the development of hyperresponsiveness in this model.
TUESDAY, SEPTEMBER 27TH 2011

dioactive inflammation observed. Using BM-chimera mice, we established a mouse model of chronic asthma characterized by significant increment of the thickness of airway subepithelial base membrane and smooth muscle layers. OVA treatment caused many GFP+ cells to appear in the sites of small airway inflammation. The extravascular localization of some GFP+ cells and their morphology was not consistent with leukocytes. Flow-cytometric analysis revealed a significant increase in Col I+GFP+ cells and a-SMA+GFP+ cells in OVA-treated GFP BM-chimera mice.

Conclusions: Considerable Col I-producing cells and a-SMA-producing cells originated from bone marrow in the lung tissues of OVA-induced chronic asthma mice and bone-marrow derived adult stem cells are at least partly responsible for asthmatic airway remodeling.

P3275
Efficient gene transduction of adipose tissue-derived mesenchymal stem cells (MSCs) for asthma research
Luis Antonio Maritans-Pardo1,2, Óscar Amort-Carrro1,3, Laura Núñez-Naveira3, Beatriz Lema-Costa3, Javier García-Castro2, David Ramos-Barbón1,3.
1Respiratory Research Unit, Complexo Hospitalario Universitario A Coruña/INIBIC, A Coruña, Spain; 2Cellular Biotechnology Unit, Instituto de Salud Carlos III, Madrid, Spain; 3Respiratory Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

Background: MSCs may offer therapeutic potential for asthma due to their immunomodulatory properties and host tolerability. MSCs may however be involved in airway remodeling. Solid preclinical development is therefore indispensable prior to clinical trial attempts. We aimed at establishing a technique for MSC genetic engineering and in vivo tracking in experimental asthma.

Methods: A gene transfer retroviral vector to induce permanent green fluorescent protein (GFP) expression on MSCs was generated. MSC cultures were produced from abdominal adipose tissue of adult mice, as per established procedures (Mesencult Kit, StemCell Technologies). GFP expression was assessed by flow cytometry and fluorescent microscopy. The MSC phenotype was verified by cell surface marker analysis, and by differentiation in adipogenic and osteogenic commercial media followed by oil-red and alizarin-red staining.

Results: Passage-4 cells targeted with a single retroviral hit at a multiplicity of infection of 1 preserved 99.4% cell viability and yielded 82.6% transduced cells highly expressing GFP. The cells showed a Sca-1+CD44+CD14-CD45-CD11b- MSC phenotype, and differentiated into adipocyte and osteocyte lineages in conditioned media.

Conclusions: Adipose tissue derived MSCs can be efficiently transduced with retoviral vectors for permanent gene expression. This provides a tool for in vivo MSC tracking to remodeling airways, and for exploring pathogenic mechanisms and therapeutic avenues through MSC genetic modifications. Funded by the Fondo de Investigación Sanitaria of Spain & European Regional Development Fund, a GlaxoSmithKline Collaborative Research Trial and SEPAR.

P3276
Analysis of P2Y12 receptor responsiveness to cysteinyl leukotrienes
Holly Foster, Elisabeth Stafflinger, Tak Lee, Grzegorz Woszczek. MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, London, United Kingdom

Leukotriene E4 (LTE4), the most stable of the cysteinyl leukotrienes (cysLT), binds poorly to classical type 1 and 2 cysLT receptors although it may potently induce bronchial constriction, airway hyperresponsiveness and inflammatory cell influx to the lungs of asthmatic individuals. Evidence of the presence of a previously unidentified LTE4 receptor has also been provided in CysLT1/CysLT2 double knock out mice. A recent study has suggested that purinergic receptor P2Y12 is required for LTE4 mediated pulmonary inflammation in a mouse model of asthma.

The aim of the study was to characterise the responsiveness of human P2Y12 to cysteinyl leukotrienes. A model of human CysLT1, CysLT2 and P2Y12 transiently overexpressed in HEK293 cells was used and responsiveness to different agonists was measured using intracellular calcium and cAMP assays. The responsiveness of human P2Y12 stably overexpressed in CHO cells was also analysed using a β-arrestin recruitment assay. CysLTs induced concentration dependent calcium mobilisation in cells overexpressing CysLT1 and CysLT2 but failed to induce any calcium response in cells expressing P2Y12 or P2Y12+Gi16. In contrast, a selective P2Y12 agonist 2-MeSADP induced specific calcium flux in cell expressing P2Y12+Gi16. Similarly, specific response to 2-MeSADP, but not to cysLTs was also observed in cells expressing P2Y12 when intracellular cAMP and β-arrestin signalling was analysed. These results suggest that LTE4 as well as other cysLTs may not activate intracellular signalling acting through human P2Y12 and another LTE4 specific receptor has yet to be identified.